
Review

Plasma membrane H+-ATPases in mineral
nutrition and crop improvement

Houqing Zeng1,*, Huiying Chen1, Maoxing Zhang2, Ming Ding3, Feiyun Xu4, Feng Yan5,
Toshinori Kinoshita6,*, and Yiyong Zhu 7,*

PlasmamembraneH+-ATPases (PMAs) pumpH+ out of the cytoplasmby consum-
ing ATP to generate a membrane potential and proton motive force for the trans-
membrane transport of nutrients into and out of plant cells. PMAs are involved in
nutrient acquisition by regulating root growth, nutrient uptake, and translocation,
as well as the establishment of symbiosis with arbuscular mycorrhizas. Under
nutrient stresses, PMAs are activated to pump more H+ and promote organic
anion excretion, thus improving nutrient availability in the rhizosphere. Herein we
review recent progress in the physiological functions and the underlyingmolecular
mechanisms of PMAs in the efficient acquisition and utilization of various nutrients
in plants. We also discuss perspectives for the application of PMAs in improving
crop production and quality.

PMAs in plants
An important type of transporter in plants, proton (H+) pumps consume the energy stored by ATP
or pyrophosphate to transport H+ across biological membranes against the concentration gradi-
ent, thus providing a proton motive force (see Glossary) and membrane potential for the
transmembrane transport of nutrient ions, sugars, amino acids, and organic anions. Proton
pumps in plants are generally divided into the plasma membrane (PM) H+-ATPase (PMA),
the vacuolar H+-ATPase (VHA), and the H+-pyrophosphatase (H+-PPase) [1,2]. Plant VHA is a
kind of multi-subunit pump which is generally composed of 13 protein subunits that are localized
mainly in the vacuolar membrane and endomembrane compartments within the secretory path-
way [1,3]. H+-PPases are located mainly in the tonoplast, but some of them are also located in
the Golgi apparatus and the PM [4,5]. Arabidopsis (Arabidopsis thaliana) AHA1 and AHA3
were the first PMA genes identified in plants [6,7]. Most PMA proteins are located on the PM,
but a few PMAs – such as arabidopsis AHA10 and its homolog in petunia (Petunia hybrida),
PH5 – are located in the tonoplast [8–11].

PMA belongs to the P3A subfamily of P-type ATPase superfamily, which forms a phosphorylated
intermediate during the hydrolysis of ATP, and returns to its original conformation after H+ extru-
sion to complete a cycle. PMA is structurally similar to other P-type ATPases, such as Ca2+-
ATPases, Cu2+/Zn2+-ATPases and Na+/K+-ATPases [12]. PMAs are a multigene family; for ex-
ample, there are 11, 10, 9, 8, and 24 gene members in arabidopsis, rice (Oryza sativa), tobacco
(Nicotiana tabacum), tomato (Solanum lycopersicum), and soybean (Glycine max), respectively
[13,14]. The PMA gene family in plants can be divided into ten subclasses, and PMA genes in vas-
cular plants are distributed mainly into five subclasses (I–V). Unlike VHA, which has multiple sub-
units, PMA is composed of a single polypeptide of about 100 kDa. PMA generally contains ten
transmembrane domains. The rest of the protein is basically located in the cytoplasm, including
the N terminal domain and C terminal self-inhibitory domain [15] (Figure 1A). The phosphorylation
domain located between the fourth and fifth transmembrane domains is mainly responsible for
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the catalytic hydrolysis of the enzyme, while the hydrophilic N terminal and C terminal mainly reg-
ulate the activity of the enzyme [15]. PMA exists extensively in plants and fungi, but not in animals,
although animals possess Na+/K+ pumps that are structurally similar to PMA [16].

As a key enzyme in plants, PMA plays indispensable roles in various physiological activities by
generatingmembrane potential, as well as providing protonmotive force for the uptake of nutrients
and the transport of metabolites [1,17,18]. The active transport of various nutrients andmetabolites
mediated by different types of transporters localized on the PM usually depends on an H+ electro-
chemical gradient across the PM, which is generated by PMA (also known as proton motive force).
It has been well documented that PMA plays important roles in regulating cell growth, pollen tube
elongation, stomatal opening, nutrient uptake, sugar transport, and environmental stress
responses (such as nutrient deficiency, salinity, drought, and pathogen infection) [1,18–23]. In
addition, the classical acid-growth theory assumes that auxin promotes the pumping of H+

from the cytoplasm by stimulating PMA activity, and leads to apoplast acidification causing
cell wall relaxation, which facilitates cell elongation and expansion [24,25] (Figure 1B).

Post-translational and transcriptional regulation of PMA
There are two different states in the terminal domains of PMA: the autoinhibited basal state, with a
relatively loose connection between ATP hydrolysis and H+ transport, and the activated state in
which ATP hydrolysis is tightly coupled to H+ transport. Regulation of PMA activity is implemented
mainly by a change in the spatial structure of the N terminal and C terminal autoinhibitory domain,
thus activating or inhibiting its proton pump activity [15]. Post-translational modifications such
as protein phosphorylation and protein dephosphorylation play crucial roles in the regula-
tion of PMA activity [15]. Phosphorylation of Ser-899 and Ser-931 in arabidopsis AHA2 reduces
proton pump activity, while phosphorylation of Thr-881 and Thr-947 increases proton pump
activity [26–29] (Figure 1A). Phosphorylation of the penultimate Thr of PMA can promote the bind-
ing of 14-3-3 proteins, which further relieves the self-inhibition of the C terminal of PMA to activate
the proton pump activity [30–33]. Phosphorylation of some amino acid residues in PMA can
activate the proton pump activity independently of 14-3-3 proteins, such as the phosphorylation
of tobacco PMA2 at Thr-889 [34]. However, phosphorylation of some amino acid residues, such

Figure 1. Schematic structure of a plasma membrane H+-ATPase (PMA) protein and the role of PMAs in
cellular growth and organic acid exudation in roots. (A) Schematic presentation of the structure of arabidopsis
AHA2. This protein is integrated into plasma membrane (PM) by ten transmembrane domains (TM1–TM10) and has most
of its remaining mass – including the catalytic domain, the N and C terminal domains – exposed on the cytosolic side of
the membrane. The activity of AHA2 is regulated at post-translational level by protein phosphorylation/dephosphorylation
at several sites in the C terminal auto-inhibitory domain. Thr-881, Ser-889, and Ser-931 can be phosphorylated by
PSY1R, FERONIA, and PKS5 kinases, respectively. Phosphorylation of the penultimate Thr-947, which is mediated by
TMK1, can activate PMA activity by promoting the binding of 14-3-3 proteins, while PP2C-Ds and ABI1 are likely to
mediate dephosphorylation of AHA2 at Thr-947. (B) Schematic presentation of acid growth. Cell elongation is promoted
by apoplast acidification and inhibited by apoplast alkalinization. (C) Schematic presentation of the involvement of PMAs in
auxin-regulated root growth and in phosphate acquisition facilitated by organic acid exudation. In acid growth, the TIR1/
AFB-mediated auxin signaling induces the expression of SAUR19 that inhibits PP2C-D protein phosphatases, thus
facilitating H+ efflux through PMAs and cell-wall acidification. In roots, the intracellular TIR1/AFB-mediated pathway
promotes H+ influx by uncharacterized transporters, leading to apoplast alkalinization and root growth inhibition.
Extracellular auxin signal induces phosphorylation of PMA at the penultimate Thr mediated by TMK1 that is in complex
with auxin-binding protein ABP10, and thus activates PMA activity. PMA is involved in the exudation of organic anions,
which solubilize inorganic and organic P pools. Abbreviations: ADP, adenosine diphosphate; AFBs, auxin signaling F-box
proteins; ALMTs, aluminum-activated malate transporters; ATP, adenosine triphosphate; BAK1, brassinosteroid-
insensitive 1-associated receptor kinase 1; EM, resting membrane potential; FERONIA, the receptor-like kinase1-like
family member protein; H+-PPase, H+-pyrophosphatase; IAA, indoleacetic acid; MATEs, multidrug and toxic compound
extrusions; PHTs, phosphate transporters; Pi, inorganic phosphate; PKS5, SOS2-like protein kinase, also named CBL-
interacting protein kinase 11 (CIPK11); PSY1R, PSY1 receptor protein kinase; Ser, serine; TCA, tricarboxylic acid cycle;
TIR1, transport inhibitor response protein 1; Thr, threonine; TM, transmembrane domain; TMK1, transmembrane kinase 1;
TMKs, transmembrane kinases; VHA, vacuolar H+-ATPase.
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Glossary
Acid-growth theory: a theory
explaining the expansion dynamics of
cells and organs in plants by involving
auxin-induced apoplastic acidification.
Apoplast acidification: H+ extrusion
into the apoplast, the space from the
external face of plasma membrane to
the cell wall (including the cell wall),
leading to the decrease of apoplast pH
which is essential for cell elongation and
expansion.
Arbuscular mycorrhiza (AM): a
widespread symbiosis between
mycorrhizal fungi and the root systems
of most land plants; highly branched
haustoria-like structures are formed in
the cortical root cells and provide
essential mineral nutrients for host plants
in exchange for organic carbon.
Biological nitrification inhibitor:
substances released from plant roots
that can repress nitrifier activity in soils,
reduce nitrogen loss associated with
nitrification and denitrification, and thus
enhance nitrogen use efficiency.
Depolarization: a change inside a living
cell that causes the distribution of electric
charges to alter, leaving the cell with a
less negative charge than the outside.
Membrane potential: the electrical
potential difference between the interior
and the exterior of a living cell.
Periarbuscular membrane: a plant
membrane that is generated by the root
cell to surround the arbuscule for nutrient
exchange during arbuscular mycorrhizal
symbiosis. Symbiosis-specific
transporter proteins are localized in the
periarbuscular membrane.
Plasmamembrane (PM) H+-ATPase
(PMA): a transmembrane enzyme that
hydrolyzes ATP to pump H+ outside the
plant cell, which in turn generates a
transmembrane H+ gradient.
Protein dephosphorylation: the
removal of a phosphate group from an
amino acid residue of a protein through
hydrolysis mediated by a protein
phosphatase.
Protein phosphorylation: a reversible
post-translational modification of
proteins in which an amino acid residue
is phosphorylated by a protein kinase,
resulting in the addition of a covalently
bound phosphate group.
Proton motive force: the force that
results froman electrochemical gradient of
protons across a membrane that can be
used for the various energy-consuming
transmembrane transportations
required by a living cell.

CellPress logo


as the phosphorylation of tobacco PMA2 at Thr-931 and Ser-938, hinders the binding of 14-3-3
protein to PMA, and thus negatively regulates the proton pump activity [29,35]. In addition, some
amino acid residues of PMA interact with 14-3-3 proteins in a phosphorylation-independent
manner, such as Thr-924 in AHA2 [36]. Notably, Thr-881 phosphorylation in response to red
light and blue light in guard cells has been recently reported to play a significant role for light-
induced stomatal opening [166,167]. Phosphorylation of PMA is mediated by protein kinases,
while dephosphorylation of PMA is mediated by protein phosphatases. The combined action
of these two kinds of enzymes determines the PMA proton pump activity [1,37,168]. At
present, a variety of protein kinases and phosphatases have been identified to regulate PMA
mainly at amino acid residues in the C terminal autoinhibitory domain [38,39]. Protein kinases
(such as PKS5, FERONIA, PSY1R, TMK1 and BAK1 [26,27,29,40–42]) and phosphatases (such
as PP2C-D and ABI1 [43–46]) are involved in the regulation of phosphorylation or dephosphoryla-
tion of PMAs (Figure 1A). Various signals – including plant hormones such as auxin and abscisic
acid [22,28,39], mycotoxins such as fusicoccin and tenuazonic acid [47], signaling peptides such
as peptide containing sulfated tyrosine 1 (PSY1) and rapid alkalization factors (RALFs) [26,27], lipids
[48], and environmental factors such as light, salt-alkali, nutrients, and pathogens [33,49–51] – can
regulate PMA activity by mediating the phosphorylation or dephosphorylation of PMAs.

PMA activity is also regulated at the transcriptional level. The expression of several PMA genes is
affected by environmental factors such as low pH, salt, hypoxia, heavy metals, and nutrients
[52–57]. Only a few upstream transcription factors of PMA genes have been identified. For exam-
ple,WRKY1 is involved in salt tolerance by positively regulating HA1 inPopulus euphratica [58], and
MYB308 is involved in iron (Fe) deficiency tolerance by positively regulating Fe deficiency-inducible
HA6 in citrus [59]. For the spatial expression patterns, some PMA genes are extensively expressed
in diverse plant tissues, and some are expressed in specific tissues. For example, rice OSA7 is
constitutively expressed in leaves, roots, guard cells, and mesophyll cells [60], while rice OSA9 is
specifically expressed in roots [60], and arabidopsis AHA3 is dominantly expressed in the phloem
of vascular tissue [61]. PMA genes that are specifically expressed in certain tissues may execute
tissue-specific functions. However, the molecular mechanisms underlying the tissue-specific and
stress-responsive expression patterns of PMA genes still need to be explored.

Role of PMA in root growth for nutrient acquisition
Plant roots, especially lateral roots and root hairs, are indispensable organs for nutrient acquisi-
tion. PMA is involved in the regulation of root system architecture in response to nutrient signals.
The expression of AHA2 is induced by low nitrogen (N) in arabidopsis, and the length of primary
roots and lateral roots is decreased in the knockout mutant of AHA2 under different N levels [62].
Arabidopsis AHA2 and AHA7 are predominantly expressed in root epidermal cells; AHA2 posi-
tively regulates primary root growth, possibly by promoting cell expansion, but AHA2 and
AHA7 negatively regulate root hair elongation [63]. Short and highly branched lateral roots are
formed under a local supply of ammonium (NH4

+) in arabidopsis [64]. Recently, it has been
revealed that NH4

+-uptake-induced and PMA-mediated acidification of the root apoplast in-
creases pH-dependent diffusion of protonated auxin into cortical and epidermal cells overlaying
lateral root primordia, and subsequently facilitates the emergence of lateral roots [65]. Under
local supply of NH4

+, knockout mutation of AHA2 reduces the third-order lateral root density
and the second- and third-order lateral root length [65].

The induction of root hair formation by exogenous methyl jasmonate is related to the increased
PMA activity and rhizosphere acidification in seedlings of lettuce (Lactuca sativa) [66]. In general,
auxin promotes shoot growth (such as hypocotyl elongation) but inhibits root growth. Recent
studies have demonstrated that intracellular auxin inhibits root growth by promoting H+ influx
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and apoplast alkalinization through the TIR1/AFB signaling pathway, while extracellular auxin
signaling induces phosphorylation of AHA2 at Thr-947 through TMK1 and activates PMA activity
[40,41] (Figure 1).

Role of PMA in N acquisition and utilization
N is the most abundant and most important mineral nutrient in plants. Plants mainly absorb inor-
ganic N from soil in forms of ammonium (NH4

+) and nitrate (NO3
–). NO3

– is co-transported with H+

into cells by a symporter, and the stoichiometry of NO3
– and H+ is about two [67,68]. Nitrate trans-

porter NRT1 and NRT2 are NO3
–/H+ co-transporters that transport one NO3

– with two H+ [69]
(Figure 2). The absorption of NO3

– usually leads to depolarization of the membrane potential,
which is compensated by the activation of PMA to repolarize and maintain the membrane potential
[70–72]. It has been documented that NO3

– uptake by NRTs in roots is associated with an H+

gradient across the PM in plants [73,74]. NO3
– could induce the activity of PMA [75], and consis-

tently, inhibitors of PMA could reduce the uptake of NO3
– in maize roots [76]. By contrast, coumarin,

one of the simplest plant secondary metabolites, could promote the high-affinity uptake of NO3
– by

increasing PMA activity in the roots of maize (Zea mays) [73]. The expression of PMA genes, such
asMHA3 andMHA4 in maize roots [77], and VvHA2 and VvHA4 in grape (Vitis vinifera) roots [78],
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Figure 2. Roles of plasma membrane H+-ATPases (PMAs) in the uptake and/or assimilation of mineral
nutrients by providing proton motive force or membrane potential for various nutrient transporters.
Abbreviations: AKT, arabidopsis K+ transporter; AMT, ammonium transporter; AOA, ammonia-oxidizing archaea; AOB,
ammonia-oxidizing bacteria; AQP, aquaporin; BNI, biological nitrification inhibitor; CLC, chloride channel; Gln, glutamine;
Glu, glutamate; GOGAT, glutamate synthase; GS, glutamine synthetase; HAK, high-affinity potassium transporter; Lsi,
Low silicon; MTP, metal tolerance protein; NHX, Na+/H+ antiporter; NiR, nitrite reductase; NR, nitrate reductase; NRT,
nitrate transporter; 2-OG, 2-oxoglutarate; SPX-MFS, SYG1, PHO81, and XPR1 (SPX), major facility superfamily (MFS)
protein; SULTR, sulfate transporter; TCA, tricarboxylic acid cycle; TIP, tonoplast integral protein; TPK, two-pore K+

channel; VIT, vacuolar iron transporter; VPE, vacuolar phosphate efflux transporter.
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is induced by NO3
– supply in root media. The expression ofMHA1 in low-N-tolerant varieties is sig-

nificantly higher than that in low-N-sensitive varieties in maize [79], suggesting a potential role of
MHA1 in N use efficiency. In addition, resupply of NO3

– to rice grown under N deficiency signif-
icantly induces the expression of OsA2, OsA5, OsA7, andOsA8 [80]. Knockdown of OSA2 ex-
pression by artificial microRNA represses the uptake of NO3

– in rice roots under low NO3
–

conditions, and results in significant decreases in leaf N concentration and grain yield [81]. No-
tably, NO3

– transport in plant leaves is also associated with PMA activity; in cucumber leaves,
the expression of a PMA gene, CsHA2, is induced by NO3

– incubation [82]. Recently, it has
been indicated that light-induced NO3

– uptake by leaves is associated with the activation of
PMA by photosynthesis and its resulting sugar metabolites in plant leaves [23]. Therefore,
the uptake of NO3

– is closely related to PMA in both roots and leaves, and PMA is potentially
involved in plant adaptation to low N stress by promoting NO3

– absorption from root media or
soils, but further studies are required to explore the underlying molecular mechanisms.

The uptake of NH4
+ by roots is also related to PMA. Plant roots absorb NH4

+ predominantly
through ammonium transporters (AMTs). Vanadate, an inhibitor of PMA, could eliminate the
depolarization of membrane potential caused by NH4

+ uptake in rice roots [83] and significantly
inhibit NH4

+ uptake, while fusicoccin, a PMA activator, could significantly increase NH4
+ uptake

rate in rice roots [84]. Knockout of OSA1 significantly decreases NH4
+ uptake by rice roots,

while overexpression of OSA1 significantly increases H+ efflux and NH4
+ uptake [84]. Most of

the NH4
+ taken up by roots is quickly assimilated in root plastids or shoot chloroplasts by the

glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, and two H+ are produced for the
assimilation of one NH4

+ [69]. Generally, the supply of NH4
+-N nutrition leads to strong rhizosphere

acidification, while NO3
–-N nutrition leads to rhizosphere alkalinization [85–87]. It has been

revealed that the ability of rice plants to prefer NH4
+ nutrition is related to the great capability

of roots to promote PMA activity to adapt to the rhizosphere acidification associated with NH4
+

nutrition [53].

PMA also plays an important role in regulating N assimilation. After uptake by plant roots, NO3
– is

first reduced to NO2
– by nitrate reductase (NR), then to NH4

+ by nitrite reductase (NiR), and sub-
sequently NH4

+ is assimilated into amino acids through the GS/GOGAT cycle in the cytosol and
plastids of roots or in the cytosol and chloroplasts of shoots. Reduction of one NO3

– to one
NH4

+ consumes two H+ in the cytosol [69]. Therefore, NO3
– assimilation as an H+-consuming pro-

cess leads to an increase in cytoplasmic pH, which compensates for the H+ influx accompanied
by NO3

– uptake. The assimilation of one NH4
+ produces two H+ in the cytosol; thus, if the excess

H+ is not pumped out in time, the cytoplasm will be acidified rapidly and cause NH4
+ toxicity [88].

Overexpression of OSA1 increases the expression of GS genes (GS1;2 and GS2) and GOGAT
genes (NADH-GOGAT1, NADH-GOGAT2 and Fd-GOGAT) in rice roots and leaves [84], suggest-
ing that overexpression of OSA1 could enhance the activities of GS and GOGAT, which may fur-
ther promote the conversion of NH4

+ into amino acids in roots [89]. Therefore, PMA is involved in
the coordination of NH4

+/NO3
– uptake and NH4

+/NO3
– assimilation, which are two closely related

biological processes in N metabolism.

Soil nitrification results in N loss from agricultural soil and subsequent environmental pollution [90].
The roots of certain plants can inhibit the activity of nitrifying bacteria by secreting organic com-
pounds such as brachialactone, methyl 3-(4-hydroxyphenyl) propionate, and 1, 9-decanediol.
These substances are named biological nitrification inhibitors (BNIs), and they are closely
associated with N use efficiency in plants [91–94]. There are two types of BNIs: hydrophilic and
hydrophobic. It has been shown that NH4

+-N nutrition promotes the secretion of hydrophilic
BNIs in a PMA-dependent manner as compared with NO3

–-N nutrition [55,91]. Vanadate inhibits
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the secretion of BNIs from sorghum roots, while fusicoccin promotes the secretion of BNIs [95].
The secretion of brachialactone, a hydrophilic BNI, depends on the proton motive force provided
by PMA in Brachiaria humidicola roots [96]. In addition, the NH4

+-induced release of 1,9-
decanediol by rice roots is also related to NH4

+-mediated rhizosphere acidification [97], suggest-
ing that PMA is also involved in the release process of 1,9-decanediol. Therefore, it is hypothe-
sized that hydrophilic BNIs are secreted from the cytoplasm through unknown anion channels,
which are dependent on the membrane potential established by PMAs (Figure 2).

Role of PMA in organic anion exudation and phosphate acquisition
As an indispensable component of nucleic acids and phospholipids, phosphorus (P) plays essen-
tial roles in plant growth and metabolism. Monohydrogen phosphate (HPO4

2–) and dihydrogen
phosphate (H2PO4

–) are usually the available inorganic phosphate (Pi) forms taken up by plant
roots through phosphate transporters (PHTs). PHT is a cotransporter associated with H+ influx,
usually transporting one Pi molecule accompanied by two to four H+ [98]. Therefore, the uptake
of Pi, especially at low concentrations (through high-affinity PHTs), is dependent on PMA to pro-
vide proton motive force. Under conditions of low P, the activity of PMA is significantly increased
in the roots of plants such as white lupin (Lupinus albus), soybean, and rice [99–101]. Exogenous
application of chemicals that regulate PMA activity significantly influences Pi uptake [102,103].
NH4

+-N can increase Pi uptake by rice roots by promoting PMA activity [102]. It has been found
that overexpression of qPE9-1 encoding a γ subunit of rice GTP-binding proteins (G proteins) in-
creases the concentration of soil-available Pi in rice rhizosphere by enhancing PMA activity and
promoting root sheath formation [104]. In arabidopsis roots, the expression of AHA2 and AHA7
is induced by low P, and these two PMAs participate in the regulation of the growth of both primary
roots and root hairs by increasing H+ efflux [105]. Therefore, PMA is involved in plant adaptation to
low P conditions by providing proton motive force and regulating root growth to promote Pi acqui-
sition from soils. The acidification of the rhizosphere and organic anion exudation promoted by
PMAs can also facilitate Pi acquisition by improving Pi availability in soils. However, the molecular
mechanism underlying low P-induced activation of PMA is still unclear. Whether and how PMA is
regulated at transcriptional and post-translational levels deserve further investigation.

Usually Pi is adsorbed by Fe and Al oxides in acidic soils, and is precipitated by Ca in neutral or
alkaline soils. Thus the plant-available Pi in soils is very low. Low P induces the exudation of
organic anions such as malate, citrate, and oxalate from plant roots [106–109]. The exudation
of organic anions is an important strategy to promote Pi acquisition by plant roots, because
organic anions can mobilize the inorganic P pools by forming complexes with Al and Fe oxides/
hydroxides [110,111]. The secretion of organic anions from roots is mediated by organic anion
transporters or channel proteins located on the PM, such as aluminum (Al)-activated malate
transporter (ALMT) and multidrug and toxic compound extrusion (MATE) transporter [110] or
anion channels (Figure 1C). Studies have shown that citrate secreted from roots is transported
across the PM by MATE transporters that are coupled with H+ influx [112,113]. The induction
of citrate exudation by low P is also associated with PMA, because the activity of PMA and citrate
exudation in the proteoid roots of white lupin are both enhanced under low P conditions, and the
H+ and citrate exudation are increased by PMA activators but are repressed by PMA inhibitors
[100,108,114]. Therefore, citrate exudation induced by P deficiency is dependent on the activity
of PMA that provides a membrane potential, releases H+ to dissolve Pi that is dissipated by Ca in
soils, and also maintains cytoplasmic pH which may be acidified by organic acid biosynthesis.
The exudation of malate is also associated with PMA-mediated H+ efflux, based on the evidence
that malate secretion is positively correlated with H+ secretion in proteoid roots of white lupin
under P deficiency, and that both malate and H+ efflux are promoted by fusicoccin but are
inhibited by vanadate [108].
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Although Al is not an essential mineral nutrient, Al toxicity has been known to be a major limiting
factor impairing plant growth in acidic soils [106]. Organic anions secreted by roots can chelate
Al in the rhizosphere, reducing its toxicity (Figure 1C). Knockout mutation of AHA2 results in re-
duced Al resistance, which is attributed to lower malate exudation in arabidopsis [115]. Recently,
it has been found that PP2C-D phosphatases negatively regulate PMA activity by mediating
protein dephosphorylation, and play a contrasting role in Al resistance in rice and arabidopsis.
In arabidopsis, mutations of genes encoding PP2C-D5/D6/D7 phosphatases increase Al resis-
tance because of enhanced malate secretion, while in rice, the PP2C-D phosphatase SAL1 pos-
itively regulates Al resistance by inhibiting PMA activity via dephosphorylation and restricting
PMA-promoted Al uptake [115]. However, some studies showed that the secretion of organic
anions is independent of PMA. In tomato roots, Al-induced oxalate secretion is independent of
PMA activity [114,116]. Al-induced citrate secretion in proteoid roots of white lupin is also inde-
pendent of PMA activity, but is associated with K+ efflux [117]. These results suggest that the
role of PMA in Al-induced organic anions exudation and Al resistance is different in different
plant species.

Role of PMA in potassium (K) acquisition
K is an essential macronutrient playing important roles in maintaining enzyme activity and regulat-
ing osmotic potential. K+ is the most abundant cation that has no negative effect on plant growth
compared with other cations. The transmembrane transport of K+ is strongly dependent on
membrane potential, which is generated by PMA. It has been documented for many years that
K+ uptake is closely related to H+ efflux [118]. KUP/HAK/KT family transporters – found in pro-
karyotes, fungi, and plants – mediate K+ uptake through a K+/H+ symport mechanism [119]
(Figure 2). Application of exogenous chemical modulators (such as methylpyraquine chloride,
an inhibitor of gibberellin biosynthesis), enhances K+ uptake by promoting PMA activity in cotton
(Gossypium hirsutum) roots [120]. In addition, it has been found that salt stress can stimulate
PMA activity to promote K+ uptake or inhibit K+ efflux, thus increasing K content in plants to
adapt to salinity [121,122]. Interestingly, halophyte species and salt-tolerant cultivars typically re-
tain more negative membrane potential values due to intrinsically higher PMA activity [123,124].
Increased PMA-mediated H+ extrusion could energize Na+ efflux though the Na+/H+ exchanger
and reduce the magnitude of PM depolarization to prevent K+ loss through depolarization-
activated K+ outward-rectifying channels, thus improving plant adaptation to salinity in the
expense of energy consumption.

PMA is also involved in plant responses to low K stress. PMA activity is induced by K+ deficiency,
which could enhance H+ efflux and apoplast acidification [118], and thus provide higher proton
motive force for K+ uptake in plants [125]. External NH4

+ addition can increase K+ uptake by pro-
moting PMA activity and the resulting H+ efflux under low K conditions [126]. K+ can bind to the
site containing Asp-617 in the cytoplasmic phosphorylation domain of PMA and negatively
regulate the transmembrane electrochemical potential by uncoupling ATP hydrolysis and H+

efflux [127], but whether the negative regulation is repressed under low K conditions is still un-
clear. Recently, it has been found that receptor-like protein kinase brassinosteroid-insensitive
1-associated receptor kinase 1 (BAK1) is involved in the low K response by positively regulating
the activity of AHA2 in arabidopsis. BAK1 interacts with the C terminus of AHA2 and phosphor-
ylates Thr-858 and Thr-881, leading to the enhancement of proton pump activity of AHA2 and the
subsequent K+ uptake under low K condition [128]. Interestingly, K+ addition could also activate
PMA under certain conditions. Under high NH4

+ conditions, increasing K+ concentration in the
nutrient solution can inhibit NH4

+ absorption and reduce NH4
+ toxicity by promoting the activity

of PMA in rice roots [129,130]. Overexpression of a high-affinity K+ transporter OsHAK5
increases PMA activity and polar auxin transport in rice roots [131]. However, the molecular
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mechanism underlying the linkage between PMA and K+ transporters induced by low K, such as
KUP/HAK/KT and HKT, is still ambiguous. Further studies are required to explore the compli-
cated interplays between K+ nutrition and PMA regulation.

The close linkage between PMA and K+ transport plays an important role in guard cells for stoma-
tal movement. Activated PMA increases H+ efflux and then causes membrane hyperpolarization,
which further activates K+ channel KAT and leads to K+ influx and stomatal opening by facilitating
water uptake and swelling of guard cells [132,133]. On the contrary, when PMA activity is
inhibited, the resulting depolarization of membrane potential leads to activation of guard cell out-
wardly rectifying K+ channel (GORK) to boost stomatal closure [134,135].

Role of PMA in iron (Fe) acquisition
As one of the essential micronutrients in plants, Fe acts as a cofactor for enzymes and plays crit-
ical roles in chlorophyll biosynthesis and photosynthesis. Although the content of Fe in soil is high,
most of the Fe is in the form of Fe oxide or hydroxide that cannot be directly absorbed and utilized
by plants. Fe deficiency is a major limiting factor in soil affecting plant growth and development,
especially in alkaline or calcareous soils. The availability of Fe in soil is highly correlated with pH;
it is increased with a decrease in soil pH [136]. According to the mechanism of Fe uptake in
plants, plants can be divided into two kinds: strategy I and strategy II [87]. In strategy I plants
(all spermatophytes with the exception of gramineous species), the central component of Fe ac-
quisition is the reduction of Fe(III) chelates by an inducible PM-localized oxidoreductase, and the
following uptake of released ferrous ion. In most strategy I plants, Fe reduction is accompanied by
PMA-mediated H+ extrusion, which weakens the Fe–O bond of Fe(III) oxides and leads to metal
detachment [137] (Figure 3). Strategy II plants (gramineous species) rely on the secretion of
phytosiderophores of the mugineic acid family that are increased upon Fe deficiency and form
complexes with Fe(III) [138,139]. The loaded Fe(III)–phytosiderophore complex is taken up by
root cells directly, without reduction into ferric Fe. Strategy I is characterized by high-valent Fe
reduction and divalent Fe absorption, and is commonly found in dicotyledonous and non-
gramineous monocotyledonous plants. Strategy I plants increase PMA activity under Fe defi-
ciency in order to increase Fe availability by secreting H+ to acidify the rhizosphere. So far,
there is no record of Fe deficiency-induced H+ secretion in strategy II plants, suggesting that
the rhizosphere Fe activation mechanism based on H+ secretion is unique to strategy I plants
[140].

Under conditions of Fe deficiency, the expression of AHA2, AHA3, AHA4, and AHA7 is induced,
and the amount of AHA proteins is significantly increased in arabidopsis, where AHA2 plays a pre-
dominant role in the rhizosphere acidification to enhance Fe acquisition [52]. Chrysanthemum
basic helix–loop–helix 1 (CmbHLH1), a transcription factor from chrysanthemum, positively reg-
ulates Fe uptake under Fe deficiency by enhancing the expression of CmHA and the subsequent
rhizosphere acidification [141]. Two transcription factors, MbERF4 and MbERF72, which are
induced by Fe deficiency, interact with each other and synergistically inhibit the expression of
MbHA2 in apple (Malus baccata) [142]. The expression of MxERF4 and MxERF72 is reduced in
Fe-deficiency-tolerant apple species (Malus xiaojinensis) when compared with Fe-deficiency-
sensitive apple species (M. baccata) under Fe deficiency, leading to the increased expression
of PMA gene MxHA2 and higher tolerance to Fe deficiency [142]. MxHA2 is positively regulated
by a bHLH transcription factor MxbHLH104, which is phosphorylated and enhanced by a
MAP kinase (MxMPK6-2) at Ser169 [143]. MxMPK6-2 interacts with and phosphorylates
MxHA2 at Ser-909, site of its C terminus, and at Thr-320 and Thr-412, sites of its catalytic
domain; phosphorylation at Ser-909 and Thr-320 could promote the activity, while phosphoryla-
tion at Thr-412 may inhibit the activity of MxHA2 [143] (Figure 3). In addition, a calmodulin-binding
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IQ-motif-containing protein 3 (IQM3) interacts with MxHA2 and represses MxHA2-mediated H+

efflux in M. xiaojinensis. Interestingly, IQM3 is phosphorylated by MxMPK4-1 at Ser-393 under
conditions of Fe deficiency, and this phosphorylation impairs the interaction between IQM3 and
MxHA2 and thus promotes H+ secretion and Fe deficiency tolerance [144]. MdbHLH104 from
other apple species (Malus domestica) also positively regulates Fe deficiency tolerance by pro-
moting the expression of MdAHA8 and H+ secretion; overexpression of MdbHLH104 increases
PMA activity and Fe concentration in apple seedlings under Fe deficiency [145]. Interestingly,
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Figure 3. Roles of plasma membrane H+-ATPases (PMAs) in iron (Fe) absorption in strategy I plants. Under low
Fe conditions, transcription factors (such as MdbHLH104), are activated and the expression of downstream PMA genes,
such as MdAHA8 and MxHA2, are induced. In apple, the sumoylation of bHLH104, which is mediated by SIZ1, promotes
the protein stability, and the phosphorylation of bHLH104 at Ser-169 by MxMPK6-2 enhances the protein stability. Apple
MxMPK6-2 also regulates PMA activity by mediating phosphorylation of MxHA2 under Fe deficiency. Apple MxIQM3
interacts with MxHA2 under Fe sufficiency. Under Fe deficiency, MxIQM3 is phosphorylated by MxMPK4-1 at Ser-393,
and the phosphorylated MxIQM3 dissociates from MxHA2 to promote H+ secretion. Thus, under low Fe stress, PMA-
mediated H+ secretion is enhanced, and the resulting rhizosphere acidification increases the solubility of ferric hydroxide
(Fe(OH)3). Ferric Fe is then reduced by ferric reduction oxidase 2 (FRO2) reductase to Fe2+ and transported into cells by
the zinc-regulated, iron-regulated transporter like protein (ZIP) transporter IRON-REGULATED TRANSPORTER 1 (IRT1).
Abbreviations: PM, plasma membrane; TF, transcription factor.
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MdbHLH104-mediated regulation of PMA activity in response to Fe deficiency is positively regu-
lated by MdSIZ1, which is a small ubiquitin-like modifier (SUMO) E3 ligase that is induced by Fe
deficiency and inhibits the ubiquitin-mediated protein degradation of MdbHLH104 to increase
the activity of PMA and thus promotes Fe uptake [146] (Figure 3).

Role of PMA in arbuscular mycorrhizal symbioses
To facilitate nutrient acquisition, most terrestrial plants are able to form a mutualistic symbiosis
with arbuscular mycorrhizal fungi (AMF) (arbuscular mycorrhiza, AM). AMF helps plants to ac-
quire nutrients through the greatly extended hypha system, and in exchange plants provide car-
bohydrates for the AMF. The deficiency of mineral nutrients in soils, especially P, promotes the
beneficial symbiosis with AMF in plant roots in order to obtain more nutrients [147]. The uptake
of nutrients by a mycorrhizal plant occurs at a specialized interface formed in arbuscule-colonized
cortical cells. Arbuscules are always enveloped in a plant-derived PM (i.e., theperiarbuscularmem-
brane) which separates the fungal hyphae from the host cytoplasm (Figure 4). A group of P, N, and K
transporters that are induced by AMF and localized in arbuscule-colonized cortical roots have been
demonstrated to be involved in nutrient uptake of the mycorrhizal pathway in plant roots. For exam-
ple, several Pi transporters belonging to the PHT1 family (Pi/H+ symporter) have been identified to
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Figure 4. Roles of plasma membrane H+-ATPases (PMAs) in the uptake of nutrients through arbuscular
mycorrhizal (AM) symbioses. In AM symbiosis, nutrient ions such as NH4

+, NO3
–, Pi, K+, Zn2+, and SO4

2– are absorbed
by the extraradical mycelium (ERM) from soil solution through various fungal transporters. Inorganic phosphate (Pi)
absorbed by the ERM is transported mainly in the form of polyphosphate (Poly-P) granules. The NO3

– absorbed by the
ERM can be reduced and converted into NH4

+ by sequential action of nitrate reductase (NR) and nitrite reductase (NiR).
NH4

+ absorbed by the ERM can be assimilated into glutamine (Gln), then into arginine (Arg) via the glutamine synthetase–
glutamate synthase (GS-GOGAT) pathway and translocated, probably coupled with Poly-P, through the intraradical
hyphae. Nutrients absorbed by the ERM are also directly translocated into the intraradical mycelium (IRM) and released
into the interfacial apoplast, and are subsequently imported into colonized root cells by corresponding transporters that
are located on the periarbuscular membrane (PAM). PMAs located at the PAM provide proton motive force for the uptake
of nutrients, such as Pi, NO3

–, and K+. Abbreviations: AMT, ammonium transporter; HAK, high-affinity potassium
transporter; NRT, nitrate transporter; PHT, phosphate transporter. Figure created with BioRender.
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be essential for symbiotic Pi uptake, such as Medicago truncatula MtPT4 and rice OsPT11
[148–150]. Low-affinity nitrate transporter NPF4.5 plays an important role in mycorrhiza-
dependent NO3

– uptake in rice roots [151]. High-affinity ammonium transporter AMT3;1 functions
in mediating the acquisition of mycorrhizal NH4

+ in maize roots [152]. Tomato high-affinity K+ trans-
porter SlHAK10 – which is upregulated by AM infection and is exclusively expressed in arbuscule-
containing cells – mediates K+ uptake through the mycorrhizal pathway [153]. Transcriptome
analyses suggest that a putative K+/H+ exchanger is upregulated under K+ deficiency in mycorrhi-
zal roots ofMedicago truncatula [154]. As expected, some PMA genes are induced by the infection
of AMF and located on the periarbuscular membrane in plant roots, such as OSA8/OsHA1 in rice,
MtHA1 inM. truncatula, andSlHA8 in tomato [155–157]. Knockout of these PMA genes affects the
growth of arbuscular mycorrhiza, and impairs the ability of plants to obtain nutrients through
symbiosis with AMF, while overexpression of these PMA genes promotes the colonization of
AMF in plant roots and enhances the acquisition of P and N [155–157]. Thus, PMA is indispensable
for the uptake of nutrients from the interfacial apoplast during the symbiosis (Figure 4).

Modulation of PMA in crop improvement to increase nutrient use efficiency and
adaptation to nutrient stresses
In agricultural production, crops have to cope with concentration fluctuation of available nutrients
in soils, and nutrient stresses often occur, such as the deficiency of individual nutrients, as well as
combined nutrient stresses in soil, such as combined N and P deficiencies, combined P and K
deficiencies, and combined P deficiency and Al toxicity [158,159]. It has been found that overex-
pression of a rice PMA geneOSA1 promotes the uptake of multiple nutrients and improves nutri-
ent use efficiency [84,160]. Therefore, genetic modulation of PMA genes and/or PMA activity is a
potentially effective strategy to improve the acquisition of multiple nutrients and simultaneously
enhance the adaptation to nutrient deficiencies in crops, especially in infertile soils (Figure 5).
Because PMA is an energy (ATP)-consuming enzyme with multiple physiological functions, if
the PMA activity is exorbitantly high, it will lead to negative effects such as excessive energy con-
sumption, growth inhibition, ion toxicity, and abnormality in stomatal closure [161]. Thus, the
activity of PMA should be maintained at a suitable level. One of the potential strategies is to
drive PMA gene expression using a tissue-specific (such as root-specific) or stress-specific
(such as lowN-inducible) promoter. Recently, it has been found that activation of PMA expression
in arabidopsis roots by grafting a wild-type scion to the rootstock of an ost2-2D mutant, which
constitutively expresses an active allele of AHA1 [161], improves nutrient use efficiency and nutri-
ent stress tolerance [162]. It is also a potential strategy to increase nutrient stress resistance and/
or nutrient uptake efficiency by grafting a transgenic rootstock with enhanced PMA activity to a
non-transgenic scion in horticultural plants and trees (Figure 5). Genome editing of the PMA
gene promoter through clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) system could also improve PMA activity under normal or
nutrient-deficient conditions. Modulating the expression of upstream regulatory factors of PMA –

such as transcription factors, 14-3-3 proteins, protein kinases and protein phosphatases – is
also a possible strategy to regulate PMA activity. In addition, mutagenesis of certain amino acids
(especially at phosphorylation sites) of PMA, possibly by prime editing to modulate PMA activity,
could also be used in the genetic improvement of nutrient efficiency in crops (Figure 5).

Concluding remarks and future perspectives
PMA plays pivotal roles in the acquisition of nutrients by generating membrane potential, provid-
ing proton motive force, and maintaining cellular pH. However, our understanding of the role and
the underlyingmolecular regulatorymechanism of PMA in plant nutrient acquisition and stress tol-
erance is still limited. There are still many questions to be answered. Enlarging our understanding
of PMA in plant nutrition will be helpful for improving crop nutrient acquisition and utilization
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Outstanding questions
How is PMA regulated by nutrient
signals at transcriptional and post-
translational levels? The associated
transcription factors, kinases, or
phosphatases regulating PMAs under
nutrient stresses have to be identified.

Do tonoplast-localized PMAs, as well
as other H+ pumps (including H+-
PPases and VHAs), also function in
nutrient transport? How are they
coordinated in nutrient transport and
nutrient stress tolerance?

Do PMAs play a role in the uptake and
utilization of other nutrients besides N,
P, K, and Fe? For example, given that
the transport of sulfate and silicate
also requires synergistic H+ influx,
PMAs could also be involved in the
acquisition of these nutrients.

Do PMAs physically interact with other
PM-localized transporters, and how
are they coordinated in physiological
processes such as nutrient transport?

How can PMAs be genetically modified
to increase nutrient use efficiency,
enhance nutrient stress tolerance,
optimize the balance of nutrients,
and/or promote the integration of
carbon and nutrient metabolism?
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efficiency as well as nutrient stress tolerance by modulating PMA activities through biotechnolog-
ical strategies, which is essential for the development of eco-friendly agriculture.

Carbohydrates from photosynthesis are essential for plant growth as well as for nutrient uptake
and assimilation, and there is a synergistic relationship between carbon assimilation and nutrient
uptake. Stomatal aperture, which is regulated by PMA, is closely associated with carbon assim-
ilation. Overexpression of AHA2 in guard cells by using the GC1 promoter significantly improves
stomatal opening, as well as the CO2 assimilation rate in plants [163]. Recent studies show that
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Figure 5. Strategies for modulating plasma membrane H+-ATPases (PMAs) to improve nutrient use efficiency
in crops. Genetic transformation of crops using the expression vector harboring PMA genes driven by constitutive, nutrient-
specific, or root-specific promoters, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) system-mediated genome editing of the PMA and its positive or negative regulators, are
potential strategies to genetically modulate PMA activity to improve nutrient use efficiency in crops. Grafting by using a
PMA-enhanced rootstock, spraying chemicals, or application of microbiomes that could increase plant PMA activity are
potential non-transgenic strategies to increase nutrient acquisition and use efficiency in crops. PMA is involved in various
physiological processes including nutrient uptake and assimilation, nutrient translocation, amino acid translocation, sugar
phloem loading, stomatal movement, and photosynthesis. These physiological processes are closely interconnected. For
example, N assimilation provides amino acids for protein biosynthesis in photosynthesis; stomatal opening promotes
water transpiration, which could further facilitate nutrient translocation and nutrient enrichment in grains. Thus, it is
possible to simultaneously improve nutrient use efficiency, photosynthesis, sugar translocation, and nutrient enrichment by
harnessing the expression of PMA. Abbreviations: AMT, ammonium transporter; ERM, extraradical mycelium; HAK, high-
affinity potassium transporter; IRM, intraradical mycelium; NiR, nitrite reductase; NR, nitrate reductase; NRT, nitrate
transporter; PHT, phosphate transporter. Figure created with BioRender.
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overexpression of OSA1 promotes photosynthesis and enhances the uptake of N, P, and K,
as well as increasing grain yield and nutrient use efficiency in rice [84,160]. Further studies are
required to explore the function of PMA in the efficient coordination of carbon assimilation and
nutrient metabolism. By modulating PMA in crop improvement, it is possibly to simultaneously
improve photosynthesis, sugar translocation, and nutrient use efficiency in crops (Figure 5). Now-
adays, elevated atmospheric CO2 accompanied by global climate change decreases accumulation
of macro- aswell asmicronutrients in plants, especially in cereal crops, and threatens food produc-
tion and nutritional quality [164]. High CO2 concentrations induce stomatal closure, and recently
this has been demonstrated to be associated with CO2-mediated dephosphorylation of PMA in
guard cells [165]. Therefore, it is a potential strategy to improve nutrient uptake and the accumula-
tion of beneficial elements as well as CO2 fixation by modulating PMA under the currently elevating
atmospheric CO2 environment and global climate change (see Outstanding questions).
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