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Simple Summary: Due to issues with pesticide residues and resistance caused by traditional pesti-
cides, the use of modified atmosphere storage technology has become increasingly popular. However,
research has shown that prolonged exposure to high concentrations of CO2 for pest control in this
technology can lead to insect resistance to hypoxia. Therefore, it is necessary to find out the resistance
mechanism. This study identifies TcCYP6K1 and TcCYP9F2 as key factors in the response to high CO2

in Tribolium castaneum, suggesting that these genes may affect the resistance to high CO2 by influenc-
ing in the synthesis or breakdown of the carbohydrate metabolism pathways. These findings provide
a theoretical basis for the combined use of novel nucleic acid pesticides and modified atmosphere
treatment.

Abstract: Cytochrome P450 monooxygenases (CYP), crucial detoxification enzymes in insects, are
involved in the metabolism of endogenous substances as well as the activation and degradation of
exogenous compounds. In this study, T. castaneum was utilized to investigate the roles of TcCYP6K1
and TcCYP9F2 genes influencing in the trehalose metabolism pathway under high-CO2 stress. By
predicting the functional sequences of TcCYP6K1 and TcCYP9F2 genes and analyzing their spatiotem-
poral expression patterns, it was discovered that both genes belong to the CYP3 group and exhibit
high expression levels during the larval stage, decreasing during the pupal stage, while showing
high expression in the fatty body, intestine, and malpighian tubules. Furthermore, following the
knockdown of TcCYP6K1 and TcCYP9F2 genes in combination with treating larvae with 75% CO2, it
was observed that larval mortality increased, and glycogen content significantly decreased, while
trehalose content increased significantly. Additionally, membrane-bound trehalase enzyme activity
declined, TPS gene expression was significantly upregulated, GS gene expression was significantly
downregulated, and ATP content showed a marked decrease. In conclusion, CYP genes are critical
responsive genes of T. castaneum to high CO2 levels, potentially impacting the insect’s resistance
to carbon dioxide through their involvement in the synthesis or breakdown of the carbohydrate
metabolism pathway. These findings could serve as a theoretical basis for the utilization of novel
pesticides in low-oxygen grain storage techniques and offer new insights for environmentally friendly
pest control strategies in grain storage.
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1. Introduction

Food security is of great significance for maintaining the stability and development of
the world, but in the food storage stage, the activities of storage pests will cause huge losses
to stored food [1]. Tribolium castaneum is one of the most harmful stored grain pests [2,3].
Chemical fumigants such as phosphine (PH3) and sulfuryl fluoride (SO2F2, SF) are usually
used to control storage pests in agricultural production. However, long-term use will
not only cause a pesticide residue problem [4], but also induce insects to develop certain
resistance [5]. For example, it has been observed that phosphine resistance exists in T.
castaneum [6,7].

Therefore, the safe and environmentally friendly modified atmosphere storage tech-
nology has been increasingly recognized by the public [8]. Within a confined space, CO2
or N2 is artificially injected to increase the concentration of other gasses and reduce the
oxygen content. This process induces the production of harmful metabolites by cells,
causing damage and inhibiting the physiological activities of pests, ultimately leading
to their death [9]. It is worth noting that the insecticidal mechanisms of N2 and CO2
atmospheres differ. N2 is non-toxic to pests, primarily causing pest suffocation due to
oxygen deprivation. In addition to replacing O2, CO2 itself also poses a threat to stored
grain pests [8]. In Oryzaephilus surinamensis, treatment with 96% N2 for 5 days shows a
similar inhibitory effect on the weevil to the control effect with 10% CO2 [10]. High CO2
can suppress the genes encoding components of the mitochondrial electron transport chain
in the pest’s body [11], leading to an increase in carbonic acid content and causing acidosis
along with lactic acid in the pest’s body, resulting in oxidative damage to stored grain
pests [12,13]. However, continuous use of controlled atmosphere (CA) technology can lead
to pests developing resistance under high CO2 levels. Pests adapt to this environment by
adjusting their physiological functions or altering gene expression levels internally, which
poses a challenge to pest control through CA [14–17]. Therefore, it is essential to investigate
insects’ protective mechanisms in a controlled atmosphere to facilitate the development
of new integrated pest control approaches combining methods such as RNA insecticides,
essential oils, and CA.

Cytochrome P450 monooxygenases (CYP) are important detoxification enzymes for
insects. They metabolize external substances like pesticides, plant secondary metabolites,
and other toxic compounds [18–21], as well as participate in the metabolism of endogenous
substances such as hormones, steroids, and fatty acids [22,23]. Within the four gene
clusters of the CYP gene family [24], CYP2 and Mito genes primarily regulate insect growth
and development, including the biosynthesis of ecdysteroids. On the other hand, CYP3
and CYP4 genes are involved in responding to external environmental stimuli and are
susceptible to the selective pressure of toxic substances present in the environment, such
as insecticides and host metabolites [25,26]. The CYP3 family is a major group of insects’
CYPs, including subfamilies CYP3, CYP5, CYP6, CYP9, CYP28, and CYP308-301 [27]. The
CYP6 family is unique to insects, with the closest relationship to the CYP9 family [28].
Generally, they are associated with the detoxification of toxic metabolites in members of
the Diptera and Lepidoptera orders [29–32]. In Helicoverpa armigera, CYP6AE14 is involved
in the metabolism of plant toxins (gossypol) [33], while in T. castaneum, the TcCYP6BQ8
gene plays a crucial role in the breakdown metabolism of terpinen-4-ol [34]. Furthermore,
current research on the function of CYP primarily focuses on its involvement in detoxifying
pesticides and other toxic substances. Previous studies have shown that the bZIP cap
‘n’ collar isoform C (CncC) can participate in resistance to Eugenol by regulating the
expression of the P450 gene in insects [35]. But studies on the involvement of CYP genes in
the detoxification of endogenous metabolites under hypoxic stress have only been reported
in Caenorhabditis elegans and human tumor cells [36,37]. However, the specific role of CYP
genes in regulating the endogenous detoxification mechanism of grain storage pests under
low-oxygen stress remains unclear. Therefore, the development of a novel double-stranded
RNA (dsRNA) pesticide targeting CYP for hypoxic stress shows practicality.
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In our previous works, we conducted analyses on T. castaneum under different con-
centrations of CO2 stress using transcriptomics and metabolomics [38,39]. Through this
analysis, we identified P450 genes that were significantly differentially expressed under
high concentrations of CO2 stress, including TcCYP6K1 (Gene ID: 658029) and TcCYP9F2
(Gene ID: 664302). In this study, we knocked down the CYP genes in T. castaneum and
investigated the role of CYP genes influencing in the trehalose metabolism pathway under
high CO2 stress-induced physiological changes. This study aimed to explore the potential
molecular targets TcCYP6K1 and TcCYP9F2 to reveal the molecular mechanisms of CYP in
T. castaneum adaptation to high CO2 stress. This research provides a theoretical basis for the
application of novel dsRNA pesticides in low-oxygen grain storage technology and offers
new insights and targets for the sustainable and effective control of stored grain pests.

2. Materials and Methods
2.1. Insect Source and Feeding Method

The T. castaneum in this experiment was sourced from the national grain reserve in
Xingyi, Guizhou. The insects were raised in a laboratory long-term, fed on flour, and kept
under controlled conditions with a temperature of 28 ± 2 ◦C and a relative humidity of
65% ± 5% RH.

2.2. Bioinformatics Analysis

To analyze the target gene, several bioinformatic tools were utilized. Firstly, the BLAST
comparison of the gene was conducted using the NCBI website (http://www.ncbi.nlm.nih.
gov, accessed on 23 October 2023) to identify homologous sequences. Next, the amino acid
structural domains were predicted using HMMER (https://www.ebi.ac.uk/Tools/hmmer,
accessed on 2 February 2024). Subsequently, ExPASy ProtParam, an online analysis tool,
was employed to assess the physicochemical properties of the encoded protein, such as
amino acid composition, molecular weight, theoretical pI, and so on. The signal peptide of
the sequence was then analyzed using SignalP 4.1 Server online software, focusing on C, Y,
and S scores, as well as the mean S score value. Furthermore, transmembrane structures
were analyzed with the TMHMM Server v. 2.0 online tool. Lastly, the phylogenetic tree was
constructed using MEGA 11.0 software to elucidate the evolutionary relationships among
the analyzed sequences [40,41].

2.3. Collection of Tissue and Developmental Expression Samples

Different life forms of T castaneum were selected as developmental expression samples,
including larvae at 1–8 instars, pupae at 1–4 days, adults at 1 day, adults at 5 days, adults
at 10 days, adults at 15 days, adults at 21 days, and adults at 30 days. Three biological
replicates were established for each developmental stage, with each replicate consisting of
35 insects. Tissue expression samples were obtained from 8th-instar larvae of T. castaneum;
dissected into the midgut, head, epidermis, fatty body, malpighian tubules, and wings
under a Leica EZ4 HD stereo microscope (Leica, Wetzlar, Germany); and preserved in
RNAiso Plus (Code No. 9109, Takara, Kyoto, Japan). Three biological replicates were set up,
with each replicate dissecting 100 larvae. All samples were flash-frozen in liquid nitrogen
and stored at −80 ◦C in an ultra-low-temperature freezer for the later detection of changes
in TcCYP6K1 (TcasGA2_TC032509) and TcCYP9F2 (TcasGA2_TC006445) expression levels.

2.4. RNA Extraction and cDNA Synthesis

Total RNA was extracted from the experimental insect samples using RNAiso Plus.
The purity and concentration of the extracted RNA were analyzed by measuring 1 µL
of RNA with the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). The integrity of the extracted RNA was verified by analyzing 2–3 µL of RNA
through 1% agarose gel electrophoresis. Any remaining RNA was stored at −80 ◦C for
future experiments. Subsequently, synthesis of the first-strand cDNA was performed

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
https://www.ebi.ac.uk/Tools/hmmer
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following the instructions of the PrimeScript® RT Reagent Kit With gDNA Eraser (Code
No. RR047A, Takara, Kyoto, Japan), and the cDNA was stored at −20 ◦C.

2.5. Cloning of TcCYP6K1 and TcCYP9F2 Genes

The ORF sequences of TcCYP6K1 and TcCYP9F2 were amplified using specific primers
designed with Primer 6.0 software (Table 1). The synthesized cDNA served as the template,
and the target fragments were amplified using the Ex Taq (Code No. RR001A, Takara,
Kyoto, Japan). Gel electrophoresis was then employed to detect the target fragments,
followed by gel purification using the US Everbright DNA Gel Extraction Kit (UE-GX-50,
UE, Jiangsu, China). The quality and concentration of the purified DNA were assessed
using a NanoDrop 2000 spectrophotometer before storage at −20 ◦C. Subsequently, 3 µL of
the purified product was mixed with 3.5 µL of Solution I and 0.5 µL of pMD18-T Vector
Cloning Kit (Code No. 6011, Takara, Kyoto, Japan), centrifuged, and incubated at 16 ◦C
for 30 min to obtain the connecting solution. Utilizing DH5α receptive cells, plasmid
transformation was carried out, and the evenly growing colonies with smooth edges and
transparent colors on the Petri dish were picked and dissolved in 30 µL of sterilized water;
then, they were used as a colony PCR template to confirm successful cloning. After PCR
amplification, 1% agarose gel electrophoresis was used to detect the correctness of the
target fragment of the colony amplified using PCR. Positive clones were cultured overnight
in an LB liquid medium (containing Amp) at 37 ◦C at 250 rpm on a shaking table, and then
the bacterial culture liquid was taken and sent to a sequencing company in Chongqing for
sequencing. The remaining sequenced bacterial culture liquid was mixed with 600 µL of
50% glycerol and stored at −20 ◦C. The Green fluorescent protein gene (GFP) was cloned
by using the pMD18-T plasmid with the GFP sequence as the template, following the same
method.

Table 1. Primers used in the dsRNA synthesis and qRT-PCR detection.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) Primer Use

dsTcCYP9F2 CCTACAAATACTGGACCGA CAGGAAGTACCCCAACAA

Amplification of dsRNAdsTcCYP6K1 AAGAAGCGGAGTGGTGGA GCGAAGTAATTGTTATGGAGG
dsGFP AAGGGCGAGGAGCTGTTCACCG CAGCAGGACCATGTGATCGCGC

T7 promoter GGATCCTAATACGACTCACTATAGG

TcRPL13a ACCATATGACCGCAGGAAAC GGTGAATGGAGCCACTTGTT

qRT-PCR analysis

TcCYP9F2 ACCGGCTACCAAGAATCCAA GTGACCTTTCCGTTGCAGTT
TcCYP6K1 AACCCCTTACGTTGGCATCT GCCAGTTGTCGTTCTTTGCA

TRE1-1 AACCAAACACTCACTCATTCC AATCCAATAAGTGTCCCAGTAG
TRE1-2 GAAGTATCGGTTGGCTCG GAGTGGGGTTGATTGTGC
TRE1-3 CTTGAACGCCTTCCTCTG CCATCCTCGTGGTCATAAA
TRE1-4 CTACCTAAACCGCTCCCA TGTCCAGCCAGTACCTCAG
TRE2 TGTTGTGCGTTTGTGCTC GGACGGCTTATTGTTGTTTA
TPS GATTCGCTACATTTACGGG GAACGGAGACACTATGAGGAC
GS ATTGGAGGAGTCTAGGAGTGTAC CCGAATCGCTTTCATCAT
GP CCGATGGCTCCTTATGTG GTATGCGTTTGACGTGGAT

PFK CTACGAAAATGTCCGAAGG GTTGCGGTCAAAAGGTGT
HCK1 GAGGTATGTCTGCGAATGC TGGAAATGTGGGTGGAAC

PK CAACCGACGAAAAGTATGC TTCACCCCTTTACTACTCCC

2.6. Synthesis and Injection of Double-Stranded RNA (dsDNA)

Using Primer 6.0 software, dsRNA primers (Table 1) were designed for PCR amplifi-
cation. The amplified products were subjected to T cloning, and then primers with a T7
promoter were used for a cross-PCR reaction (Table 1). The dsRNA was then synthesized
using the T7 RiboMax Express RNAi System kit (REF P1700, Promega, Madison, WI, USA).
The integrity of total RNA was assessed by agarose gel electrophoresis, while the concen-
tration of synthesized dsRNA was measured using NanoDrop™ 2000. The dsGFP was
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synthesized as a control using the same method. The synthesized dsRNAs were stored at
−80 ◦C.

T. castaneum larvae at 8th-instar nymphs were immobilized on ice and injected using
a Transferman 4r microinjector (Eppendorf, Hamburg, Germany) with dsTcCYP6K1 or
dsTcCYP9F2 between the second and third abdominal segments where the epidermis is
thinner. Each larva was injected with 100 nl of dsRNA (2000 ng/µL). The control group
received an injection of dsGFP. Following injection, the larvae were divided into different
groups, placed in rearing bottles, and exposed to either normal oxygen or high-CO2
conditions (75% CO2 + 25% air) with three replicates per group, each consisting of 40 larvae.
After 48 h, samples were collected and stored at −80 ◦C for a subsequent analysis of gene
expression levels, enzyme activities, and substance contents.

2.7. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

After 48 h post-injection, the survival rates of the experimental insects fed with a
mixture of dsRNA and CO2 in each group were observed and recorded. Simultaneously,
the expression levels of TcCYP6K1, TcCYP9F2, and genes related to the trehalose metabolic
pathway in the surviving larvae’s bodies were measured post-injection at 48 h. Utilizing
Primer 6.0 software, quantitative PCR primers were designed based on the coding region
sequences of known genes related to the trehalose metabolic pathway in T. castaneum. The
amplification of Ribosomal Protein L13a (RPL13a) was used as an internal control (Table 1).
Related genes, which are included in Table 1, were expressed by TB Green Premix Ex Taq II
(Tli RNaseH Plus) (Code No. RR420A, Takara, Kyoto, Japan) and qRT-PCR. The Bio-rad
CFX96 Real-Time PCR Detection System (Bio-RAD Laboratories Inc., Hercules, CA, USA)
was used for detection. Each PCR was performed in a final 20 µL volume, 1 µL of cDNA,
1 µL (10 µM) of each primer, 7 µL of RNase Free ddH2O, and 10 µL of an SYBR Green
master mix. The reaction conditions were as follows: 5 s at 95 ◦C after 2 min at 95 ◦C; 59 s
at 30 ◦C; and after 39 cycles, a melt curve analysis was conducted at 65–95 ◦C. The obtained
data were analyzed by the 2−∆∆CT method [42].

2.8. Determination of Carbohydrate Content and Trehalase Activity

Twenty test insects were taken from the experimental group and the control group,
and placed in PCR tubes. For each treatment, 60 larvae of T. castaneum were utilized for
each of the 3 biological replicates. Firstly, 200 µL of PBS was added to the homogenated
sample and the sample was sonicated for 30 min; later on, 800 µL of PBS was added to the
crushed sample at 4 ◦C, 1000× g, and the sample was centrifuged for 20 min. After centrifu-
gation, 350 µL of the supernatant was used to determine protein concentration, glycogen,
and trehalose content, and 350 µL of the supernatant underwent ultracentrifugation at
20,800× g for 60 min. After ultracentrifugation, 300 µL of the supernatant was used to
determine glucose concentration, trehalase activity, and protein content. We suspended the
supercentrifuge precipitation in 300 µL of added PBS to determine glucose concentration,
trehalase activity, and protein concentration. Then, we combined a mixture of the super-
natant and suspension (60 µL), 75 µL of 40 mM trehalose (CAS 99-20-7, Sigma Aldrich,
Saint Louis, MO, USA), and 165 µL of PBS, which was incubated at 37 ◦C for 60 min and
inactivated by 5 min incubation at 100 ◦C. The trehalase activity was measured using
the Glucose (Go) Assay Kit (Lot No. SLCD8160, Sigma, MO, USA), and the reaction was
terminated by adding 12 N H2SO4 (260 µL, CAS 7664-93-9). Finally, the absorbance value
was measured at 540 nm using a microplate reader (Thermo Fisher Scientific, Waltham,
MA, USA). The protein contents of samples were determined using the BCA Protein Assay
Kit (Cat No. P0006, Beyotime, Shanghai, China). Lastly, the anthrone method was used for
the determination of the content of trehalose [43–45].

2.9. Determination of ATP Content

After washing the T. castaneum samples with physiological saline, 10% of test insects’
tissues were homogenized in double-distilled water. The homogenate was then placed
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in a boiling water bath for 10 min, followed by vigorous mixing on a vortex oscillator
for 1 min at 3500 rpm. The mixture was centrifuged for 10 min, and the supernatant was
used for ATP content determination using an ATP test kit (A095-1-1, Nanjing Jiancheng
Bioengineering, Nanjing, China) following the manufacturer’s instructions. Absorbance
values at 636 nm were measured, and ATP content was calculated using a specific formula.

2.10. Data Analysis

The data analysis was performed using SPSS 23.0 software, with experimental results
presented as the mean ± standard error. A temporal and spatial expression analysis was
conducted using one-way ANOVA for significance testing, where different letters on bars
denote significant differences between groups (p < 0.05, ANOVA). The experiment involved
three biological replicates, and significant differences between two groups were assessed
using a Student’s t-test, with p (*) < 0.05 indicating significance, p (**) < 0.01 indicating high
significance, and p (***) < 0.001 indicating very high significance.

3. Results
3.1. Sequence Analysis of Two P450 Genes in T. castaneum

The amino acid sequences of two P450 genes, TcCYP6K1 (XP_015833657.1) and Tc-
CYP9F2 (NP_001127706.1), were obtained from the GenBank database. The encoded pro-
teins have predicted molecular weights of 57.23 and 58.75 kDa; have theoretical pI values of
8.93 and 7.97 (Table S1), respectively; lack signal peptides; and are hydrophilic (Figure S3).
Both TcCYP6K1 and TcCYP9F2 proteins share numerous conserved motifs (Figure S1).
While TcCYP9F2 has a transmembrane structure, TcCYP6K1 does not (Figure S2). Both
TcCYP6K1 and TcCYP9F2 possess the p450 conserved domain (Figure S4). A phylogenetic
analysis revealed that TcCYP6K1 and TcCYP9F2 of T. castaneum exhibit the highest homol-
ogy with TmCYP6K1-like and TmCYP9Z62, respectively, all belonging to the CYP3 group
(Figure 1).
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Figure 1. The phylogenetic tree of TcCYP6K1 and TcCYP9F2 in T. castaneum. (marked in red) The tree
was conducted with MEGA 11.0 based on the amino acid sequences using the maximum likelihood
method based on the Poisson model. The bootstrap replicates were 1000 in number. Numbers at each
branch point represent the bootstrap values. Different background colors indicate CYP mitochondrial
(yellow), CYP2 clade (green), CYP4 clade (blue), and CYP3 clade (pink). Species abbreviations are as
follows: Cs, Chilo suppressalis; As, Anopheles sinensis; Tc, Tribolium castaneum; Tm, Tribolium madens.
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3.2. Temporal and Spatial Expression Pattern of Two P450 Genes in T. castaneum

The TcCYP6K1 gene is highly expressed during both larval and adult stages, while
TcCYP9F2 shows high expression only in fifth- to seventh-instar larvae. The relative
expression levels of both genes during the pupal stage are significantly lower than those
during the larval and adult stages (Figure 2A,B). TcCYP6K1 peaks in expression on day 5 of
the adult stage, being 186.4 times higher than on day 4 of the pupal stage (Figure 2A).
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Figure 2. Relative expression levels of TcCYP6K1 and TcCYP9F2 in different life forms and tissues in T.
castaneum. (A) Relative expression levels of TcCYP6K1 in different life forms. (B) Relative expression
levels of TcCYP9F2 in different life forms. (C) Relative expression levels of TcCYP6K1 in different
tissues. (D) Relative expression levels of TcCYP9F2 in different tissues. 1L-8L, larvae at 1–8 instars;
1P-4P, pupae for 1–4 days; 1A, adult at 1st day; 5A, adult at 5th day; 10A, adult at 10th day; 15A, adult
at 15th day; 21A, adult at 21st day; 30A, adult at 30th day; MG, midgut; HD, head; EP, epidermis;
FB, fatty body; MT, malpighian tube; WI, wing. Three biological replicates were conducted for each
development stage, and 35 test insects were collected for each replicate. Each replicate involved
the dissection of 100 adult insects (mean ± SE; Tukey’s test; different letters in the figure indicate
significant differences between groups, p < 0.05).

The expression levels of the TcCYP6K1 and TcCYP9F2 genes are the lowest in the
epidermis (Figure 2C,D). The TcCYP6K1 gene is predominantly expressed in the fatty
body, midgut, and malpighian tube, 31.9, 23.5, and 12.5 times higher than in the epidermis
(Figure 2C). The TcCYP9F2 gene is mainly expressed in the fatty body, head, and malpighian
tube, 64.1, 58.0, and 22.0 times higher than in the epidermis, respectively (Figure 2D).

3.3. Detection of Silencing Efficiency and Survival Rate after CO2 Stress

The relative expression levels of TcCYP6K1 and TcCYP9F2 were detected through
qRT-PCR after the injection of dsRNA and 48 h incubation. The results indicate that
compared to the control group, the relative expression levels of TcCYP6K1 and TcCYP9F2
genes decreased by 77.6% and 70.2%, respectively (Figure 3A,B), indicating that RNAi
successfully inhibited gene expression and could be used in subsequent experiments.
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Figure 3. The dsRNA interference efficiency and CYP gene detection of changes in its sensitivity
to CO2. (A) dsTcCYP6K1 interference efficiency; (B) dsTcCYP9F2 interference efficiency; (C) the
TcCYP6K1 detection of changes in its sensitivity to CO2; (D) the TcCYP9F2 detection of changes in
its sensitivity to CO2. Values are presented as the means ± SE. ***: p < 0.001, **: p < 0.01, *: p < 0.05
(independent samples t-test). Three biological replicates were performed on 60 T. castaneum larvae in
each treatment.

After 48 h of dsRNA interference injection, survival rates of test insects were assessed
under different concentrations of CO2 treatment (25%, 50%, 75%, and 95%) and statistically
analyzed. The results revealed that under different concentrations of CO2 atmospheres,
the survival rates of the dsTcCYP6K1 and dsTcCYP9F2 treatment groups were significantly
lower than the dsGFP control group (Figure 3C,D). Particularly at the 95% CO2 concentra-
tion, compared to the control group, the survival rate decreased by 30.3% in the dsTcCYP6K1
treatment group (Figure 3C) and by 42.0% in the dsTcCYP9F2 treatment group (Figure 3D).

3.4. Effect on Carbohydrate Metabolism after Silencing and under CO2 Stress

The experimental groups injected with dsTcCYP6K1 and dsTcCYP9F2, and the control
group injected with dsGFP, were treated with 75% CO2. It was found that compared to the
control group, the glycogen content of the larvae in the experimental groups significantly
decreased, while glucose content did not show significant changes. However, there was a
significant increase in the trehalose content compared to the control group (Figure 4A,B).

Results from trehalase activity assays showed that the soluble trehalase activity of the
larvae in the experimental groups treated with 75% CO2 did not show significant changes
compared to the control group, while the membrane-bound trehalase activity significantly
decreased (Figure 4C,D).
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Figure 4. Effects of CYP gene RNAi on the contents of carbohydrates and trehalase activity in the
75% CO2 condition. (A) Effects of TcCYP6K1 RNAi on the contents of carbohydrates with the 75%
CO2 condition. (B) Effects of TcCYP9F2 RNAi on the contents of carbohydrates with the 75% CO2

condition. (C) Effects of TcCYP6K1 RNAi on the trehalase activity with the 75% CO2 condition.
(D) Effects of TcCYP9F2 RNAi on the trehalase activity with the 75% CO2 condition. For each
treatment, 60 larvae of T. castaneum were taken for 3 biological replicates. Values are presented as the
means ± SE. ***: p < 0.001, **: p < 0.01, *: p < 0.05 (independent samples t-test).

3.5. Effect on ATP Content after Silencing and under CO2 Stress

After silencing the genes GFP, TcCYP6K1, and TcCYP9F2, we treated the test insects
with 75% CO2 and measured ATP levels. The results showed a significant decrease in
ATP levels when interfering with TcCYP6K1 and TcCYP9F2 compared to dsGFP injection.
Particularly, the injection of dsTcCYP9F2 led to the most significant drop in larval ATP
levels, reaching as low as 363 nmol/gprot (Figure 5).
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3.6. Effect on Trehalose Metabolism Pathway after Silencing and under CO2 Stress

In the experimental group of eighth-instar larvae of T. castaneum, dsTcCYP6K1 and
dsTcCYP9F2 were injected, while the control group was injected with dsGFP. After 48 h,
75% CO2 treatment was applied. Gene expression related to the trehalose metabolism
pathway was examined. In comparison to the control group, the injection of dsTcCYP6K1
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resulted in a significantly reduced expression of TRE1-1 and PK genes, and a significantly
increased expression of TRE1-4 and TPS genes. The expression of other genes did not show
significant changes (Figure 6A). In the experimental group injected with dsTcCYP9F2, a
significant downregulation of TRE1-4 and GS genes and significant upregulation of TRE1-2
and PK genes were observed compared to the control group, while the expression of other
genes remained unchanged (Figure 6B).
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Figure 6. The effect of TcCYP6K1 (A) and TcCYP9F2 (B) RNAi on the expression of trehalose metabolic
pathway-related genes in T. castaneum under the 75% CO2 condition. TRE, trehalase; TPS, trehalose-6-
phosphate synthase; GS, glycogen synthase; GP, glycogen phosphorylase; PFK, phosphofructokinase;
HCK1, hexokinase; PK, pyruvate kinase. Three biological replicates were performed on 60 larvae of
T. castaneum in each treatment. Values are presented as the means ± SE. ***: p < 0.001, **: p < 0.01,
*: p < 0.05 (independent-samples t-test).

4. Discussion

CYPs are a class of detoxification enzymes widely present in aerobic organisms [46],
primarily involved in the metabolism of endogenous substances and the detoxification
of exogenous toxic compounds. The expression pattern of the P450 gene is significantly
different in different tissues and life forms, which provides clues for exploring its physiolog-
ical function [47–50]. In this study, we used qRT-PCR to analyze the temporal and spatial
expression of TcCYP6K1 and TcCYP9F2 genes. In developmental expression, we found that
the TcCYP6K1 gene was highly expressed in late larval and adult stages, and TcCYP9F2 was
only highly expressed in late larval stages (Figure 2A,B). Similarly, in Bactrocera minax, the
CYP314A1 gene displayed higher expression levels during the larval stage and lower levels
during the pupal stage [51]. Furthermore, in T. castaneum, CYP4Q4, CYP4G7, CYP4BR3, and
CYP345A1 are most commonly expressed in larvae and mature adults [52]. In terms of gene
expression patterns, the expression sites of the TcCYP6K1 gene are primarily concentrated
in the fatty body, midgut, and malpighian tubules (Figure 2C). Similarly, the expression
sites of the TcCYP9F2 gene are predominantly in the fatty body, head, and malpighian
tubules (Figure 2D). These tissues have been recognized as crucial detoxification organs,
with some detoxification-related P450 genes exhibiting high expression levels in these
locations [53–55]. For example, in Drosophila melanogaster, CYP311A1 is localized at the
anterior midgut [56]. In T. castaneum, TcCYP4BN6 and TcCYP6BQ11 have been detected to
express in the malpighian tubules [57]. Additionally, in Helicoverpa armigera, CYP6AB12,
CYP321B1, CYP6AB60, and CYP321A19 are significantly expressed in the midgut and fatty
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body [58]. Moreover, in Plutella xylostella, the CYP367 gene shows high expression in the
head with the ability to detoxify [59]. Consequently, it can be inferred that the TcCYP6K1
and TcCYP9F2 genes in T. castaneum possess detoxification abilities, primarily functioning
during the larval stage.

To further understand the detoxification role of TcCYP6K1 and TcCYP9F2 genes in
T. castaneum under the CO2 atmosphere, we injected eighth-instar larvae with dsRNA
and subjected them to CO2 treatment [60–62]. The results revealed that under different
concentrations of CO2 treatment, the survival rates of the dsTcCYP6K1- and dsTcCYP9F2-
treated groups were significantly lower than those of the control group (Figure 3C,D).
Similarly, the essential oil of Artemisia vulgaris (EOAV) significantly induced the expression
of the TcCYP6BQ7 gene in T. castaneum, and silencing this gene increased larval mortality in
response to EOAV from 49.67% to 71.67% [50]. Moreover, dichlorvos significantly induced
the expression of TcCYP4BN6 and TcCYP6BQ11 in T. castaneum, and silencing these genes
led to a significant increase in larval mortality upon insecticidal treatment [57]. Furthermore,
terpinen-4-ol significantly induced the expression of TcCYP9Z6 in T. castaneum, and RNAi-
mediated silencing of this gene resulted in an increase in larval mortality from 47.75%
to 63.92% [63]. Therefore, it is inferred that TcCYP6K1 and TcCYP9F2 are key genes and
play essential roles in T. castaneum responding to CO2 stress. The downregulation of
TcCYP6K1 and TcCYP9F2 gene expression increases the sensitivity of T. castaneum to CO2,
inhibiting aerobic metabolism and disrupting their life activities (Figure 3C,D). However,
the involvement of TcCYP6K1 and TcCYP9F2 genes in the detoxification mechanism of
endogenous metabolites under high-CO2 conditions remains unclear and requires further
investigation.

In the larva of T. castaneum, silencing of the TcCYP6K1 and TcCYP9F2 genes resulted
in a suppression of aerobic metabolism in T. castaneum exposed to high CO2 in a closed
environment with high CO2 and low O2 levels, leading to the consumption of energy in the
form of ATP [17]. ATP, the fundamental unit providing energy, is the primary source of en-
ergy for most cellular activities [64]. The ATP content in T. castaneum significantly decreased
(Figure 5), weakening its energy metabolism to a certain extent. Glycogen, an essential
metabolic and energy storage substance, synthesized and stored mainly in fatty bodies,
can rapidly convert into trehalose and glucose to provide energy to other tissues when
insects require an energy supply [65,66]. In this study, the glycogen content significantly
decreased in T. castaneum larvae treated with dsRNA injection and 75% CO2 exposure,
with no significant change in glucose content and a significant increase in trehalose content
(Figure 4A,B). It is inferred that glycogen is converted into glucose, partially compensating
for the deficiency in carbohydrate metabolism and energy supply [17]. Additionally, tre-
halose, as a vital sugar and energy source in the insect hemolymph, plays a crucial role in
various physiological activities in insect development and stress resistance [67–70]. Studies
have shown that Polypedilum vanderplanki can effectively accumulate trehalose under dry
stress conditions to help insects cope with desiccation stress [71].

Trehalose is synthesized in the fatty body mainly by trehalose-6-phosphate synthase
(TPS) and trehalose-6-phosphate phosphatase (TPP) [72]. Subsequently, trehalose is re-
leased into the lymphatic system and transported to various tissues through the lymphatic
circulation to exert its functions [69]. Trehalase enzymes are categorized into soluble treha-
lase (TRE1) and membrane-bound trehalase (TRE2). Following treatment of larvae with
silenced TcCYP6K1 and TcCYP9F2 genes under high-CO2 conditions, a significant decrease
in trehalase activity was observed (Figure 4C,D). Moreover, there was a marked upreg-
ulation in TPS gene expression and downregulation in TRE gene expression (Figure 6).
Similarly, in fruit flies, inducing the overexpression of TPS to elevate trehalose levels
enhanced the flies’ hypoxia tolerance [73]. Consequently, we can infer that silencing of
TcCYP6K1 and TcCYP9F2 genes hinders trehalose metabolism in T. castaneum, leading to
insufficiency of trehalase enzymes for trehalose breakdown and ultimately causing insect
mortality due to the inability to maintain normal physiological activities. The distinct and
intricate potential functions of the carbohydrate metabolic pathway necessitate further



Insects 2024, 15, 502 12 of 15

in-depth exploration. These results indicate that CYP genes may impact the resistance
of T. castaneum to hypoxia by modulating the carbohydrate metabolic pathway through
synthesis or breakdown processes.

5. Conclusions

In this paper, the dsRNA combined with high-CO2 controlled atmosphere treatment
was used to silence the TcCYP6K1 and TcCYP9F2 in T. castaneum, to investigate the role
of P450 genes influencing in the trehalose metabolic pathway under high CO2 stress. Re-
ducing the expression of TcCYP6K1 and TcCYP9F2 enhances the sensitivity of the red
flour beetle to CO2, demonstrating that TcCYP6K1 and TcCYP9F2 are key factors in the
response to high levels of CO2 in T. castaneum. The experimental results show a significant
increase in trehalose content, a significant decrease in trehalose synthase activity, a signifi-
cant upregulation of TPS gene expression, and a significant downregulation of TRE gene
expression. It is speculated that the silencing of the TcCYP6K1 and TcCYP9F2 genes hinders
the metabolism of trehalose in T. castaneum, leading to insufficient trehalase enzymes or
trehalose breakdown, thereby disrupting normal physiological activities and resulting in
death. Therefore, CYP genes may impact the CO2 resistance in T. castaneum by influencing
in the synthesis or decomposition of carbohydrate metabolic pathways. This provides a
theoretical basis for the utilization of novel nucleic acid pesticides in low-oxygen grain
storage technology.
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