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Cytochrome P450 monooxygenases (CYP450) and trehalose play a significant detoxification role under high CO, stress.
Notably, CYP450 significantly affects trehalose metabolism of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), a
devastating stored pest. To explore whether trehalose enhances CYP gene responses to CO, stress, investigations were
conducted on the 95% CO, tolerance in 8th-instar T castaneum larvae, whose specific CYP genes—TcCYP4BN1, TcCYPIF2,
and TcCYP9AB1-were silenced, across different trehalose dietary regimes (50% flour + 50% trehalose or 100% trehalose).
The 95% CO, tolerance response was systematically evaluated through multi-dimensional analysis of gene expression levels,
carbohydrate contents, and enzyme activities. Results indicated that compared with the 50% flour + 50% trehalose feeding
regimen, trehalose-only diet groups exhibited downregulation of trehalose metabolism-related genes, with the notable
exception of the dsCYP9F2 experimental group. As to carbohydrate contents, glucose content increased significantly on
100% trehalose diet by inhibiting the expression of TcCYP9ABT, but it decreased in the other 2 groups, a pattern that also
held true for glycogen. Together, these results demonstrate that trehalose does enhance the response of CYP genes to CO,
stress, and that TcCYP9AB1 is more responsible for modulating trehalose metabolism. Future research could investigate the
molecular mechanisms underlying these regulatory processes and their practical applications, potentially enhancing biocontrol
techniques and advancing pest management solutions.

Keywords:trehalose, cytochrome P450 monooxygenase, CO, stress, stored pest, RNA interference

Received: 9 March 2025. Revised: 5 August 2025. Accepted: 21 August 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For commercial re-use,
please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via
the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

Gz0z Jaquieldag g| uo Jesn sieyoea| noyzBueH 1o Aleiqi] Aq 88£9528/GEZIe0)/23l/€601 "0 L /I0p/3|o1uB-80uBApE/3al/W0o dno olwapede//:sdiy Woll papEojUMO(]


https://orcid.org/0009-0005-5886-6274
https://orcid.org/0000-0002-6790-7753
mailto:tbzm611@hznu.edu.cn
mailto:reprints@oup.com
mailto:journals.permissions@oup.com

Graphical abstract

Xie et al.

Flour:Trehalose dsCYPIABI
an ]

%

%
dsCYP4BNI TPS TRE |
ISCYPOF? Glycogen ———> Trehalose —> Glucose
s g A
dsCYP94B1 ’
95% CO, : Trehallose ol 2 Mortality raised
I remained stable ! i i
( f‘ = [ P e
/T\ —[\ \ |‘ 1. //
.:" i ’é{ 1?%\:] %’ ) : \_KV\//\I
" D \
ey W Trehalose dsCYP9ABI
Tribolium castaneum (100%)

Glycogen —3‘ Trehalose —> Glucose

A

TRE |

b 4
Metabolite | Trehalose content | I Mortality I
Enzyme I accumulated | I decreased |
RNAi treatment == ==m==e== 2 =S==m=====
Introduction considerable challenges to widespread adoption and practical

Food grain is an important material basis for human survival
and an important strategic material for the national economy
and livelihood of some (Cui et al. 2023). However, during the
food storage stage, the activity of pests has given rise to great
losses on grain storage (Ingegno and Tavella 2022). Among
these destructive insects, Tribolium castaneum (Herbst) (Cole-
optera: Tenebrionidae), a prevalent stored pest, causes substan-
tial economic losses in diverse storage environments
(Manandhar et al. 2018, Natonek-Wisniewska et al. 2022). To
control these pests, modified atmosphere storage technology,
utilizing carbon dioxide or nitrogen to alter the gas composi-
tion, is gaining popularity as a safe and cost-effective solution
relative to chemical fumigants (Paul et al. 2020). High N, is
believed to reduce O, levels (Huang et al. 2024a), while CO,
(10 to 20%) can be directly toxic or inhibitory to insects (Badre
etal. 2005). In Rhyzopertha dominica (Fabricius) (Coleoptera:
Bostrichidae), higher mortality rates have been observed with
the rising CO, gas pressure (Sadeghi et al. 2021). Also, in Plo-
dia interpunctella (Huibner) (Lepidoptera: Pyralidae), more
significant decrease in survival rates has been noted after CO,
was added to low O, (Huang et al. 2024b). Despite remarkable
strides in modified atmosphere storage technology, the devel-
opment of resistance to high CO, levels in pests has presented

application (Wu et al. 2022). Therefore, investigating the
molecular mechanisms behind CO,-enriched modified storage
technology could further influence and improve the field of
grain preservation.

Trehalose is known for its role as a biochemical protector in
promoting organismal survival under adverse environmental
stress (Watanabe 2006, Ribeiro et al. 2024). As a non-reducing
disaccharide widely distributed in nature, trehalose can be syn-
thesized by trehalose-6-phosphate synthase (TPS) and degraded
by trehalase (TRE) (Kaur et al. 2024). TPS is broadly catego-
rized into 2 subfamilies: class I and class II (Wang et al. 2019,
Zou et al. 2024), while TRE is categorized into 2 forms based
on its cellular distribution: the soluble form, Trehalase 1
(TRE1), and the membrane-bound form, Trehalase 2 (TRE2)
(Tellis et al. 2023, Zhang et al. 2024). As early as 2003, treha-
lose has been reported to enhance hypoxia adaptability mainly
by reducing protein aggregation in cells (Chen et al. 2003), and
it has currently found to help insects cope with various abiotic
and biotic stresses (Tao et al. 2023). Due to these properties,
its protective effects under toxic stress are of great interest
(Singh et al. 2011, Bao et al. 2021), and its metabolic pathways
are being considered as targets for pest control (Tang et al.
2016, Pan et al. 2020, Wu et al. 2022).
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In addition to trehalose-mediated protection, the cytochrome
P450 monooxygenase (CYP450) gene families, among the larg-
est in nature, also contribute to environmental stress tolerance
across animals, plants, and microorganisms (Baldwin et al. 2021,
Shelomi 2022, Chakraborty et al. 2023). In Apis cerana cerana
(Fabricius) (Hymenoptera: Apidae) and T. castaneum, specific
CYP genes are reportedly involved in pesticide resistance and
detoxification (Zhang et al. 2021, Tan et al. 2023). Furthermore,
CYP genes are also responsively expressed and participate in
resistance mechanisms under physical stressors such as hypoxia
and ultraviolet radiation (Sang et al. 2012, Zhu et al. 2016).
These findings suggest that understanding the underlying mech-
anisms is crucial for discovery of novel control targets and strat-
egies, with some reports highlighting the importance of CYP450
in T. castaneum’s response to extreme environments (Yao et al.
2019, Wang et al. 2020, Chen et al. 2022). However, the same
function in insects lacks enough research (Pender and Horvitz
2018), signaling a need for more scientific investigations.

In the current study, experiments were conducted on the 95%
CO, tolerance of 8th-instar T. castaneum larvae where we silenced
TcCYP4BN1 (GenBank: NM_001130521 (National Center for
Biotechnology Information 2024a), NCBI Nucleotide Database),
TcCYP9F2 (GenBank: NM_001134234 (National Center for
Biotechnology Information 2024b), NCBI Nucleotide Database),
and TcCYP9ABI1 (GenBank: XM_967453 (National Center for
Biotechnology Information 2024c), NCBI Nucleotide Database)
genes, which may be correlated with the trehalose metabolism
pathway, across different trehalose regimes (50% flour + 50%
trehalose or 100% trehalose). We sought to investigate whether
trehalose enhances the response of CYP genes to CO, atmosphere
stress, offering new solutions to the problem of pest resistance in
grain storage under controlled atmosphere conditions.

Materials and Methods

Insect Cultures

The insects T. castaneum were sustained under laboratory con-
ditions with the whole wheat flour as the primary nutrient
source. The rearing environment was precisely controlled, with

temperature regulated at 29+ 1°C, humidity maintained at
65+5% RH, and a OL : 24 D photoperiod implemented
throughout the cultivation period.

RNA Extraction and cDNA Synthesis

Total RNA extraction from T. castaneum larval specimens was
conducted using the Trizol reagent kit (Invitrogen, Carlsbad,
California, United States). The extracted RNA quality verifi-
cation involved dual assessment procedures: 1pul RNA for
purity/concentration determination using the NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham, Mas-
sachusetts, United States), and 2 ul RNA for structural integrity
confirmation via 1% agarose gel electrophoresis (Kim et al.
2024). Any residual RNA was maintained at -80 °C for future
analysis. The first-strand cDNA synthesis was achieved using
the PrimeScript RT Reagent Kit With gDNA FEraser (TaKaRa,
Kyoto, Japan) and stored at -20°C (Tang et al. 2016).

Cloning of TcCYP4BN1, TcCYP9F2, and TcCYP9AB1
Genes

Partial ORF sequences of TcCYP4BN1, TcCYP9F2, and TcCY-
P9AB1 were amplified from the synthesized cDNA using the Ex
Taq kit (TaKaRa, Kyoto, Japan) (Osanai et al. 2006). Specific
primers for amplification (Table 1) were designed with Primer
6.0 software (Premier Biosoft International, Palo Alto, Califor-
nia, United States) (Long et al. 2024). After confirming these
amplified target fragments by electrophoresis, the corresponding
gel bands were excised and purified with the DNA Gel Extraction
Kit (US Everbright, Jiangsu, China). Quality and concentration
of the purified DNA were assessed using a NanoDrop 2000
spectrophotometer prior to =20 °C storage (Kim et al. 2024). To
obtain the connecting solution, 3 pl of the purified DNA were
mixed with 3.5l Solution Tand 0.5 ul pMD18-T Vector Cloning
Kit (Takara, Kyoto, Japan) in PCR tubes, followed by brief cen-
trifugation and incubation at 16°C for 30min (Zhang et al.
2020). Plasmid transformation was performed using DHSa
competent cells, after which distinct circular colonies from the
Petri dish were selected, dissolved in 30yl of sterile water, and
directly utilized as templates for colony PCR to verify cloning

Table 1. Primer sequences used for dsRNA synthesis and gRT-PCR detection of genes associated with trehalose metabolism in T castaneum

Gene Forward Primer (5°-3) Reverse Primer (5°-3°) Function of Primers
dsCYP4BN1 GCATCAACGAGAAGTCCACA AGTCAGCAAACCAGTCCCTAA dsRNA synthesis
dsCYP4BN1-T7 T7-GCATCAACGAGAAGTCCACA T7-AGTCAGCAAACCAGTCCCTAA

dsCYP9ABI1 GTTCTATCTGATGAGCAAAGC CGATGACGTACTCCTTCG

dsCYP9AB1-T7 T7-GTTCTATCTGATGAGCAAAGC T7-CGATGACGTACTCCTTCG

dsCYP9F2 CCTACAAATACTGGACCGA CAGGAAGTACCCCAACAA

dsCYP9F2-T7 T7-CCTACAAATACTGGACCGA T7-CAGGAAGTACCCCAACAA

TcCYP4BN1 GGCAGGCCTCTAACTCAAGA CGTAACTGCGGGACTTTTGT qRT-PCR detection
TcCYP9ABI1 GGGCGTCACGATACCAGATA TCCTCCCAGATGAAGTGCTG

TcCYPYF2 ACCGGCTACCAAGAATCCAA GTGACCTTTCCGTTGCAGTT

TcTRE1-1 AACGACTCGCAATGGCTGG CGGAGGCGTAGTGGAATAGAG

TcTRE1-2 GTGCCCAATGGGTTTATCG CAACCACAACACTTCCTTCG

TcTRE1-3 CCTCTCATTCGTCACAAGCG AAGCGTTTGATTTCTTTGCG

TcTRE1-4 ACGGTGCCCGCATCTACTA GTGTAGGTGGTCCCGTTCTTG

TcTRE2 CTCAGCCTGGCCCTTAGTTG GGAGTCCTCGTAGATGCGTT

TcTPS1 CGATTCGTACTACAACGGCTGC GTGGTGTAGCATTGCCAGTGC

TcTPS2 ACCTTGCCATCATCCCTCC GCCCACCATTTGCTTCACA

TcRPL13a ACCATATGACCGCAGGAAAC GGTGAATGGAGCCACTTGTT

T7: GGATCCTAATACGACTCACTATAGG (5°-3°).
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success. After PCR amplification, 1% agarose gel electrophoresis
was used to detect the correctness of the target fragment of the
colony amplified using PCR. Positive clones were cultured over-
night in LB-Amp medium (37°C, 250 rpm). Then, 500 pl of the
clones were submitted to Zhejiang Sunya Biotech Co., Ltd (Zhe-
jiang, China) for sequencing. Following the same method, the
Green fluorescent protein gene (GFP) was cloned by using the
pMD18-T plasmid with the GFP sequence as the template.

Synthesis and Microinjection of dsRNA

The primers (Table 1) designed using Primer 6.0 software with
a T7 promoter were used to perform cross-PCR reaction on
the correctly sequenced plasmids, after which the dou-
ble-stranded RNA (dsRNA) of the target genes were synthe-
sized via the T7 RiboMax Express RNAi System kit (Promega,
Madison, Wisconsin, United States) (Xu et al. 2020, Long
et al. 2024). The total RNA integrity and concentration were
verified through agarose gel electrophoresis and spectropho-
tometry separately. The dsGFP was synthesized for the control
group using the same method. Synthesized products were
finally stored at -80°C.

Tribolium castaneum larvae at the eighth instar were immo-
bilized on ice and microinjected using a Transferman 4r micro-
injection (Eppendorf, Hamburg, Germany) with 100 nL
dsRNA (2,000 ng/pl) targeting TcCYP4BN1, TcCYP9F2, or
TcCYP9ABI through the abdominal intersegmental membrane
(second-third segments) (Guan et al. 2024). The same amount
of dsGFP was injected into the control group. Each dsRNA
injection group had about 800 larvae in total.

Experimental Setup

Following microinjection with dsCYP4BN1, dsCYP9F2, dsCY-
P9ABI1, or dsGFP, larvae from each injection group were ran-
domly divided into 2 equal subgroups (about 400 larvae per
subgroup). These subgroups were then fed 2 distinct trehalose
dietary regimens: 1 subgroup received 50% flour + 50% tre-
halose, and the other received 100% trehalose. This experi-
mental setup created a total of 8 final treatment groups (4
dsRNA types x 2 diets). After 48 h, we evaluated mortality rates
from each treatment group. Surviving larvae (minimum 260
per group) were collected and stored at =80 °C for a subsequent
analysis of gene expression levels, carbohydrate contents, and
enzyme activities.

Mortality Analysis

Larvae that died within 3 h of microinjection were identified
as mechanical injury death and excluded from subsequent mor-
tality analysis. Mortality rates were evaluated after 48h of
microinjection in each group maintained under 95% CO, with
either 50% flour + 50% trehalose or 100% trehalose diets. For
each treatment group, a minimum of 370 larvae were used for
mortality calculation, with 4 biological replicates per treatment
group. Larvae were recorded death if they were immobile after
being touched with a brush.

Quantitative Real-Time Polymerase Chain Reaction

Tribolium castaneum larvae that survived in the 48-h mortality
assessment were collected from the 8 previously described treat-
ment groups. Each treatment group combined 1 of 4 dsSRNA
microinjections (dsCYP4BN1, dsCYP9F2, dsCYP9ABI1, or
dsGFP) with 1 of 2 trehalose dietary regimens (50% flour +

Xie et al.

50% trehalose or 100% trehalose) under a 95% CO, atmo-
sphere. Three biological replicates (10 larvae each) were ana-
lyzed per group. For each biological replicate, 3 technical
replicates were performed to ensure experimental reliability.
Utilizing Primer 6.0 software, quantitative real-time poly-
merase chain reaction (QRT-PCR) primers (Table 1) were
designed based on coding sequences of trehalose pathway genes
in T. castaneum, with Ribosomal Protein L.13a (RPL13a) serv-
ing as endogenous reference (Long et al. 2024). Gene expres-
sion quantification employed TB Green Premix Ex Taq II (Tli
RNaseH Plus) (TaKaRa, Kyoto, Japan) on a Bio-Rad CFX96
system. QRT-PCR reaction system: 5 pl of an SYBR Green mas-
ter mix, 0.4pl (10pmol) of forward/reverse primers, 1pl of
cDNA, 2.8l of RNase Free ddH,0. qRT-PCR reaction pro-
cedure: pre-denaturation at 95°C for 30s, denaturation at
95°C for 5s, extension at 60 °C for 20s (39 cycles). The melt
curve analysis was conducted in a range of 65 to 95 °C. Relative
expression was analyzed using 2-24 €T methodology (Livak
and Schmittgen 2001).

Determination of Carbohydrate Contents and
Trehalase Activity

Samples for determining carbohydrate contents and trehalase
activity were collected from the larvae that survived in the 48-h
mortality assessment in the 8 previously described treatment
groups. Each treatment group combined 1 of 4 dsSRNA micro-
injections (dsCYP4BN1, dsCYP9F2, dsCYP9ABI, or dsGFP)
with 1 of 2 trehalose dietary regimens (50% flour + 50% tre-
halose or 100% trehalose) under a 95% CO, atmosphere. Four
biological replicates (15 larvae each) were analyzed per group.
Following homogenization in 1,000 ul PBS (pH 7.0), samples
underwent 30-min sonication and primary centrifugation
(1,000xg, 20 min, 4 °C). The resultant supernatant was divided
into 2 aliquots: 350 pl for simultaneous quantification of gly-
cogen, trehalose, and total protein, while the remaining 350 ul
was ultracentrifuged (20,800xg, 60 min). After ultracentrifuga-
tion, 300 ul of ultra-supernatant and resuspended pellet (300 pl
PBS) were respectively analyzed for glucose concentration, tre-
halase activity, and protein content. Trehalase activity assays
incorporated 60 pl sample (supernatant/pellet suspension), 75 pl
40 mM trehalose (Sigma-Aldrich, Saint Louis, Missouri, United
States), and 165 pl PBS, incubated at 37°C for 60 min prior to
heat inactivation (100°C, 5min). Reaction termination with
260pl 12N H,SO, preceded trehalase activity measurement via
Glucose (Go) Assay Kit (Sigma-Aldrich, Saint Louis, Missouri,
United States) with absorbance value measured at 540 nm using
a microplate reader (Thermo Fisher Scientific, Waltham, Mas-
sachusetts, United States). Protein determinations utilized the
BCA Protein Assay Kit (Beyotime, Shanghai, China), while tre-
halose measurements followed anthrone methodologies (Zhang
etal. 2017, Yu et al. 2020, Ge et al. 2021).

Determination of CYP450 Activity

Cytochrome P450 monooxygenase activity was determined
using the Insect Cytochrome P450 Enzyme-Linked Immunosor-
bent Assay (ELISA) Kit (COIBO BIO, Shanghai, China). Sam-
ples for determining CYP450 activity were collected from the
larvae that survived in the 48-h mortality assessment in the 8
previously described treatment groups. Each treatment group
combined 1 of 4 dsRNA microinjections (dsCYP4BN1,
dsCYP9F2, dsCYP9AB1, or dsGFP) with 1 of 2 trehalose
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dietary regimens (50% flour + 50% trehalose or 100% treha-
lose) under a 95% CO, atmosphere. For each group, 4 biolog-
ical replicates (30 larvae each) were homogenized in 30 ul PBS
and flash-frozen. Prior to analysis, samples were thawed (2 to
8°C), mixed with 270pul PBS, and centrifuged (2,500rpm,
20min) to collect the supernatant. Standard solutions (50 pl per
well) and diluted test samples (40 pl diluent + 10 ul sample) were
loaded onto the ELISA plate. After adding 100 pl enzyme con-
jugate (excluding blank wells), the plate was incubated at 37°C
for 60 min. Wells were washed 5 times with 20x diluted buffer
(30s interval per wash), followed by sequential addition of 50l
substrates A and B for 15min of dark incubation at 37°C.
Reactions were terminated with 50 pl stop solution (blue-to-
yellow color transition), and absorbance was measured at
450nm within 15 min using a microplate reader.

Statistical Analysis

All data were organized with Microsoft Excel (Microsoft Cor-
poration, Redmond, Washington, United States) and analyzed
with IBM SPSS Statistics 23.0 (IBM Corporation, Armonk,
New York, United States). Results are presented as mean =
standard error (SE) and visualized in bar graphs with GraphPad
Prism 9.0.0 (GraphPad Software, Boston, Massachusetts,
United States). For gene expression data, student’s independent
samples #-test was used to compare differences between the
dsCYP treatment group and the dsGFP control group in RNA
interference efficiency and expression levels of trehalose meta-
bolic pathway genes (ie TRE1-1, TRE1-2, TRE1-3, TRE1-4,
TRE2, TPS1, and TPS2). For data of mortality, carbohydrate
contents (ie glucose, trehalose, and glycogen), and enzyme
activities (ie soluble trehalase, membrane-bound trehalase, and
CYP450), Shapiro-Wilk test and Levene’s test were used first
to test normality and homoscedasticity respectively. Where
data (ie mortality on 100% trehalose diet, carbohydrate con-
tents, and enzyme activities) were normal and homoscedastic,
one-way analysis of variance (ANOVA) was then used to deter-
mine the effect of CYP genes knockdown. When the one-way
ANOVA results were significant (P<0.05), means were sepa-
rated by Tukey Honestly Significant Difference (HSD) post-hoc
test at a=0.05. However, since mortality data on 50% flour +
50% trehalose diet were non-normal and heteroscedastic,
Welch’s ANOVA was used to test if mortality differed between
groups: dsGFP, dsCYP4BN1, dsCYP9F2, and dsCYP9ABI1
(Delacre et al. 2018). When the mortality differences were sig-
nificant (P <0.05), Games-Howell post-hoc test at a=0.05 was
used to examine pairwise differences between means (Zhang
etal. 2022, Agbangba et al. 2024). As to gene expression anal-
ysis (QRT-PCR), 3 biological replicates per treatment group
were used, while 4 biological replicates per treatment group
were applied for measurements of mortality rates, carbohydrate
contents, and enzyme activities.

Results

Detection of Silencing Efficiency and Mortality after
Feeding Trehalose under 95% CO,

Tribolium castaneum larvae received dsCYP injections and
were fed with diets of either 50% flour + 50% trehalose or 100%
trehalose, to explore the effects of CYP450 and trehalose on their
resistance to 95% CO, stress. Changes in expression of target
genes were then monitored. The results indicated that trehalose

feeding still maintains the potency of RNA interference under
95% CO,. Specifically, the expression of TcCYP4BN1, same as
that of TcCYP9ABI, significantly decreased when trehalose was
added (TcCYP4BN1:¢t o0 oo oo = 8-249, df=4, P=0.001;
rehalowe = 0:334, df=4,P=0.003; TcCYPIABIL: t ) (o0 o
= 6.978, df=4,P=0.002; ¢, =4.123,df=4, P=0.015; Fig.
1A and C). Also, expression levels of TcCYP9F2 notably fell far
below those in the control groups (£ (., o oo webatore = 2-061,
df=4,P<0.001;z¢ ,  =25.148, df=4, P<0.001; Fig. 1B).
After 48 h, mortality of T. castaneum was observed and ana-
lyzed. Results indicated that under a 95% CO, atmosphere,
mortality rates fluctuated depending on RNAIi and trehalose
diet. On a mixed diet of 50% flour + 50% trehalose, the mor-
tality increased in all dsCYP treatment groups (F=21.280,
df=3,6.078,P=0.001). On 100% trehalose diet, dsCYP4BN1
and dsCYP9F2 slightly increased the mortality, while dsCY-
P9AB1 decreased mortality compared with the control
(F=8.272,df=3,12, P=0.003; Fig. 2).

Effect on Carbohydrate Contents under 95% CO,
afterTrehalose Feeding and dsRNA

Under 95% CO, conditions, carbohydrate contents were
assessed in T. castaneum subjected to a combination of trehalose
dietary regimes (50% flour + 50% trehalose or 100% trehalose)
and dsCYP treatments after 48 h. The results indicated that car-
bohydrate contents changed little (Fig. 3). As to glucose content,
it was generally reduced in the dsCYP groups on 50% flour +
50% trehalose diet (F=3.922, df=3, 12, P=0.037), and signifi-
cantly increased in the dsCYP9AB1 group on 100% trehalose
diet (F=14.285,df=3,12, P<0.001; Fig. 3A). Glycogen content
increased in the dsCYP9AB1 group but decreased in the other
2 groups on 50% flour + 50% trehalose diet (F=5.070, df=3,
12, P=0.017). On 100% trehalose diet, compared with the
dsGFP, both the dsCYP4BN1 and dsCYP9F2 treatment groups
exhibited reduced glycogen content, while the dsCYP9AB1
demonstrated an increased glycogen content (F=2.798, df=3,
12, P=0.085; Fig. 3C). Trehalose content showed no significant
differences among groups on a mixed diet (F=0.490, df=3, 12,
P=0.696). However, on 100% trehalose diet, dsCYP groups had
notably higher trehalose levels than the control (F=5.016, df=3,
12, P=0.018). Overall, the trehalose content from 50% flour +
50% trehalose diet was slightly higher than that from 100%
trehalose diet in T. castaneum (Fig. 3B).

Effect onTrehalase Activity under 95% CO, after
Trehalose Feeding and dsRNA

After 48 h of co-treatments with trehalose dietary regimes (50%
flour + 50% trehalose or 100% trehalose) and dsCYP under
95% CO,, the trehalase activity was quantified. Soluble tre-
halase activity slightly decreased in both the dsCYP4BN1 and
dsCYP9ABI treatment groups on 50% flour + 50% trehalose
diet, or diverged on 100% trehalose diet compared with the
controls, while dsCYP9F2 maintained equivalent activity on
50% flour + 50% trehalose diet but increased on 100% treha-
lose diet, though no significant changes were observed in either
diet condition (F , ;o .. . =0.968,df=3,12, P=0.440;
F o =2:406,df=3,12, P=0.118; Fig. 4A). Membrane-bound
trehalase activity remained stable on 50% flour + 50% trehalose
diet (F=1.495, df=3, 12, P=0.266) but dropped significantly
by 22.4% with the dsCYP9ABI treatment on 100% trehalose
diet (F=3.556, df=3, 12, P=0.048; Fig. 4B).
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Fig. 1. The dsRNA interference efficiency in T castaneum under 95% CO, stress after 48h of trehalose dietary regimes (60% flour + 50% trehalose or
100% trehalose) and dsCYP treatments. A) dsCYP4BN1 interference efficiency; B) dsCYPIF2 interference efficiency; C) dsCYPI9ABT interference
efficiency. Each group included 3 biological replicates with 10 larvae each. Each biological replicate included 3 technical replicates. Values are presented
as mean = SE. ***P<0.001, **P<0.01, *P<0.05 (independent samples t-test).

50% flour + 50% trehalose trehalose

a

. e
T T

Mortality (%)
$

-
1

Fig. 2. Mortality in T castaneum under 95% CO, stress after 48h of trehalose dietary regimes (60% flour + 50% trehalose or 100% trehalose) and
dsCYP treatments (dsGFP, dsCYP4BN1, dsCYPIF2, or dsCYPI9AB1). Each group included 4 biological replicates. Values are presented as mean + SE.
Different letters indicate significant differences between groups. The 50% flour + 50% trehalose dietary groups were analyzed using Welch’'s ANOVA
followed by Games-Howell post-hoc test at «=0.05 (letters ordered from smallest to largest mean), while the 100% trehalose dietary groups were
compared by one-way ANOVA followed by Tukey HSD post-hoc test at a=0.05 (letters ordered from largest to smallest mean).
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Fig. 3. The effects of trehalose dietary regimes (50% flour + 50% trehalose or 100% trehalose) and CYP gene silencing (dsGFP, dsCYP4BN1, dsCYPIF2,
or dsCYPI9ABT) on glucose A), trehalose B), and glycogen C) content in T castaneum under 95% CO, stress after 48h. Each group included 4 biological
replicates with 15 larvae each. Values are presented as mean + SE. Different letters indicate significant differences between groups (Tukey HSD post-hoc

test at a=0.05).

Effect on CYP450 Activity under 95% CO, after
Trehalose Feeding and dsRNA

Following a 48-h exposure to trehalose dietary regimes (50% flour +
50% trehalose or 100% trehalose) and dsCYP treatments under 95%
CO, conditions, the CYP450 activity was assessed. On 50% flour +

50% trehalose diet, the dsCYP9AB1 group had notably higher
CYP450 activity than the control, while the other 2 groups showed a
slight increase (F=12.345, df=3, 12, P<0.001). On 100% trehalose
diet, the CYP450 activity showed little difference among the 4 groups
(F=0.772, df=3, 12, P=0.532; Fig. 5).
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dsCYPIF2, or dsCYPIABT) on soluble A) and membrane-bound B) trehalase activity in T. castaneum under 95% CO, stress after 48h. Each group
included 4 biological replicates with 15 larvae each. Values are presented as mean + SE. Different letters indicate significant differences between groups

(Tukey HSD post-hoc test at a=0.05).
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Fig. 5. The effects of trehalose dietary regimes (50% flour + 50% trehalose or 100% trehalose) and CYP gene silencing (ds GFP, dsCYP4BN1,

dsCYPIF2, or dsCYPIABT) on CYP450 activity in T castaneum under 95% CO, stress after 48h. Each group included 4 biological replicates with 30
larvae each. Values are presented as mean + SE. Different letters indicate significant differences between groups (Tukey HSD post-hoc test at a=0.05).
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Effect onTrehalose Metabolism Pathway under 95%
CO, afterTrehalose Feeding and dsRNA

To investigate dsCYP impact on trehalose metabolism under
95% CO, and trehalose dietary regimes (50% flour + 50%
trehalose or 100% trehalose), key gene expressions in the tre-
halose metabolic pathway were assessed. On 50% flour + 50%
trehalose diet, the dsCYP4BN1 treatment significantly
down-regulated TcTRE1-1, TcTRE2, TcTPS1, and TcTPS2
(TcTRE1-1: t=7.085, df=4, P=0.002; TcTRE2: t=5.168,
df=4, P=0.007; TcTPS1: t=3.878, df=4, P=0.018; TcTPS2:
t=4.270, df=4, P=0.013; Fig. 6A), while dsCYP9F2 decreased
TcTRE1-1, TcTRE1-3, and TcTPS1 (TcTRE1-1: t=11.609,
df=4,P<0.001; TcCTRE1-3:¢=2.810, df=4, P=0.048; TcTPS1:
t=4.003, df=4, P=0.016; Fig. 6B). In contrast, dsCYP9AB1
up-regulated TcTRE2, TcTRE1-2, TcTRE1-3, and TcTPS2
(TcTRE2: t=-4.533, df=4, P=0.011; TcTRE1-2: t=-3.561,
df=4, P=0.024; TcTRE1-3: t=-4.280, df=4, P=0.013;
TcTPS2: t=-4.081, df=4, P=0.015; Fig. 6C).

On 100% trehalose diet, the dssCYP4BN1 treatment sharply
reduced most genes, except for T¢TREI1-3 (TcTREI1-1:
t=4.013, df=4, P=0.016; TcTRE1-2: t=5.018, df=4,
P=0.007; TcTRE1-3: t=1.548, df=4, P=0.196; TcTRE1-4:
t=6.760,df=4, P=0.002; TcTRE2: t=4.753, df=4, P=0.009;
TcTPS1:t=4.159, df=4, P=0.014; TcTPS2: t=12.827, df =4,
P<0.001; Fig. 7A). dsCYP9F2 notably increased TcTRE1-2
and decreased TcTRE1-4, with minor changes in other genes
(TcTRE1-1: t=0.689, df=4, P=0.529; TcTRE1-2: t=-3.637,
df=4, P=0.022; TcTRE1-3: t=-2.220, df=4, P=0.091;
TcTRE1-4: t=3.990, df=4, P=0.016; TcTRE2: t=-0.175,
df=4,P=0.869; TcTPS1:t=-0.822, df=4, P=0.457; TcTPS2:
t=-2.696, df=4, P=0.054; Fig. 7B). In the dsCYP9ABI1 treat-
ment, key genes TcTRE2, TcTPS1, and TcTPS2 saw significant
increases, with TcTPS2 experiencing the most pronounced
upregulation (TcTRE1-1:t=-0.638, df=4, P=0.558; TcTRE1-
2: t=-0.998, df=4, P=0.375; TcTRE1-3: t=-0.182, df=4,
P=0.865; TcTRE1-4: t=-1.822, df=4, P=0.143; TcTRE2:
t=-2.869, df=4, P=0.046; TcTPS1: tr=-4.402, df=4,
P=0.012; TcTPS2: t=-5.211, df=4, P=0.006; Fig. 7C).

Discussion

Cytochrome P450 monooxygenases are a class of important
detoxification enzymes, crucial for the physiological functions
of insects, while trehalose serves as a blood sugar regulator and
a versatile compound that protects cells against various stress
factors (Elbein et al. 2003, Kuczynska-Wisnik et al. 2024, Wang
et al. 2024). In this study, we used qRT-PCR to analyse the
expressions of TcCYP4BN1, TcCYP9F2, and TcCYP9ABI1 genes
in individuals after dsSRNA injection and trehalose feeding. It
was found that dsRNA still maintained its inhibitory efficacy
despite the presence of exogenous trehalose, as evidenced by the
downregulation of CYP gene expressions (Fig. 1).

To delve deeper into the interplay between trehalose supple-
mentation and CYP450 in T. castaneum under 95% CO,, we
calculated the mortality of dsCYP4BN1-, dsCYP9F2-, and
dsCYP9ABI1-treated groups. The results revealed that on 100%
trehalose diet, dsCYP treatments still increased mortality of T.
castaneum larvae compared with those on a mixed diet. How-
ever, under dsCYP9ABI treatment the mortality increased on
a mixed diet, but decreased surprisingly on 100% trehalose
diet compared with the controls (Fig. 2). Distinct from dsCY-
P9AB1,dsCYP4BN1 and dsCYP9F2 treatments showed lower

mortality on a mixed diet and higher mortality on 100% tre-
halose diet, which was more similar to that of dsGFP (Fig. 2).
This divergence suggests that TcCYP9AB1 may play a unique
role in trehalose metabolism during high-CO, stress. The ele-
vated mortality in dsCYP9AB]1-treated larvae on a mixed diet
implies that TcCYP9AB1 may regulate trehalose metabolism
under physiological conditions, with its silencing compromis-
ing larval adaptation to high-CO, stress. Strikingly, the reduced
mortality observed in the 100% trehalose group upon TcCY-
P9AB1 knockdown may point to the role of accumulated tre-
halose as a protector, which is known to provide energy and
protection against various stress (Tellis et al. 2023). Moreover,
in recent studies, a strong association has been found between
CYP genes and trehalose metabolism. For example,
TcCYP314A1 has been identified as effective for trehalose
metabolism and synthesis of insect 20E in T. castaneum (Zhou
et al. 2022). Also, when TcCYP6K1 was knocked down via
RNAI, both an increased larval mortality and trehalose levels
were observed in T. castaneum under 75% CO, stress (Guan
et al. 2024), further emphasizing the correlation between CYP
genes and trehalose metabolism. Thereby, a critical role for
TcCYP9ABI in trehalose metabolism, with a tighter link rela-
tive to the other 2 target genes, is the most likely model to
account for our results.

Previously empirical evidence implies in several species,
including Acyrthosiphon pisum (Harris) (Hemiptera: Aphidi-
dae) and Drosophila melanogaster (Diptera: Drosophilidae),
that carbohydrate levels generally shift when insects are fed
diets with varying sugar amounts as a metabolic regulatory
mechanism to maintain energy homeostasis (Wang et al. 2021,
Strilbytska et al. 2022). However, we observed no extremely
significant biochemical changes, neither in the levels of glucose
and glycogen nor in the activity of trehalase and CYP450, when
T. castaneum was treated with trehalose feeding and RNAi
(Figs 3-5). A potential explanation may be that stored product
insects can regulate their physiological metabolic processes
through their well-developed regulatory mechanisms to cope
with environmental stress (Harrison et al. 2006). In Calloso-
bruchus chinensis (Hope) (Coleoptera: Bruchidae), the magni-
tude of metabolic alteration under hypoxic stress showed
significant fluctuations relative to controls (Cui et al. 2019),
further suggesting that insects may maintain homeostasis
through self-regulatory mechanisms to adapt to environmental
stress. Upon closer analysis of the results, we posit that the
TcCYP9ABI gene exhibits a stronger association with trehalose
metabolism compared with the other 2 target genes, as evi-
denced by the significant increase in glucose content on 100%
trehalose diet in the dsCYP9AB1 group, whereas the other 2
treatment groups showed decreases (Fig. 3A). Similar trends
were also observed in glycogen content (Fig. 3C).

Studies have elucidated the contributions of carbohydrate
metabolism to biological processes, and its critical role as a link
between protein, lipid, nucleic acid, and secondary biomass
metabolisms (Pan et al. 2020). Moreover, the potential regula-
tory mechanism underlying insect resistance to high CO, stress,
when studied, can be fostered to facilitate the growth of sus-
tainable storage-pest management solutions (Guan et al. 2024).
Therefore, we measured the expression levels of TcCYP4BN1,
TcCYPI9F2, TcCYP9ABI1, and genes related to the trehalose
metabolic pathway via qRT-PCR, to further explore the intri-
cate relationship between trehalose and CYP genes under stress
conditions. Experiments evaluating the expression of related
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Fig. 6. On 50% flour + 50% trehalose diet, effects of dsCYP treatments on trehalose metabolic gene expression in T castaneum under 95% CO,
stress. A to C) display the impact of TcCYP4BN1 A), TcCYP9F2 B), and TcCYP9ABT C) RNA interference on the expression of trehalose metabolic
pathway genes (TRE1-1, TRET-2, TRE1-3, TRE1-4, TRE2, TPS1, and TPS2) in larvae. TRE, trehalase; TPS, trehalose-6-posphate synthase. Each group
included 3 biological replicates with 10 larvae each. Each biological replicate included 3 technical replicates. Values are presented as mean + SE.
***¥P<0.001, **P<0.01, *P<0.05 (independent samples t-test).
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Fig. 7. On 100% trehalose diet, effects of dsCYP treatments on trehalose metabolic gene expression in T castaneum under 95% CO, stress. A to C) display
the impact of TcCYP4BN1 A), TcCYPIF2 B), and TcCYPIABT C) RNA interference on the expression of trehalose metabolic pathway genes (TRET-1, TRET-2,
TRE1-3, TRE1-4, TRE2, TPS1, and TPS2) in larvae. TRE, trehalase; TPS, trehalose-6-posphate synthase. Each group included 3 biological replicates with 10
larvae each. Each biological replicate included 3 technical replicates. Values are presented as mean + SE. ***P<0.001, **P<0.01, *P<0.05 (independent

samples t-test).

genes in all groups allowed us to confirm the possibilities that
trehalose can enhance the response of CYP genes to CO, atmo-
sphere stress, and that trehalose intake may alleviate the upreg-
ulation of key genes involved in trehalose metabolism caused
by dsRNA, as evidenced by a decrease in the expression of
genes associated with trehalose metabolism pathway in groups

exclusively fed trehalose, with the exception of the dsCYPIF2,
compared with groups fed 50% flour + 50% trehalose (Figs 6
and 7). Consistent with our conjectures, trehalose and
TcCYP9E2 have a synergistic effect in T. castaneum coping
with high CO, stress (Zhou et al. 2023). Also, trehalose and
TcCYP6K1 can improve the ability of T. castaneum to
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withstand high CO, stress (Guan et al. 2024). Ultimately, our
results further characterized the 3 CYP genes (TcCYP4BN1,
TcCYPIF2, and TcCYP9AB1) which respond to high CO,
stress and regulate trehalose metabolism in T. castaneum, facil-
itating stress resistance through trehalose accumulation.

In summary, by using RNAi to silence TcCYP4BNI,
TcCYP9F2, and TcCYP9ABI1 genes, our findings highlight the
biological relevance of trehalose in enabling T. castaneum to
withstand high CO, stress via enhancing the function of CYP
genes, and reveal clear evidence of the close connection between
TcCYP9ABI and trehalose metabolism. Our study paves novel
paths for delving into how T. castaneum adapts to high CO,
stress, affording a panoramic view of the extensive prospects and
existing boundaries of adaptive mechanisms within a dynami-
cally transforming world. This knowledge is not only essential
for understanding insects’ resilience, but also has practical impli-
cations for grain storage protection. However, the specific mech-
anism of trehalose in coping with CO, stress still requires further
physiological and biochemical research for clarification. Future
research could delve into the molecular basis of these regulatory
mechanisms, helping develop more precise biocontrol strategies
and providing new solutions for pest management.
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