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SUMMARY

The specific roles of nonsense-mediated mMRNA decay (NMD), a translation-dependent RNA quality control
mechanism that degrades mRNAs containing premature termination codons (PTCs), in mammalian cranio-
facial development have remained unclear. Here, we show that knockout of the essential NMD factor Smg5
in mouse craniofacial neural crest cells leads to hypoplastic mandibles, subsequently inducing tongue mis-
positioning and cleft palate formation. Furthermore, Smg5 loss triggers massive cell apoptosis and dis-
rupts cell differentiation, accompanied by widespread alterations in alternative splicing and a surge in
PTC-containing mRNA levels. Notably, the abnormal upregulation of a PTC-containing Porcn transcript
leads to reduced Porcn protein and impaired Wnt5a/JNK signaling, a crucial pathway for craniofacial
morphogenesis. Finally, death of Smg5-deficient craniofacial neural crest cells can be ameliorated by
Wntba in craniofacial neural crest (CNC) in vitro explants. Taken together, our findings demonstrate that
Smg5-mediated NMD regulates mammalian craniofacial development by fine-tuning Wnt signaling through

post-transcriptional regulation of Porcn.

INTRODUCTION

Cleft palate represents one of the most common craniofacial
birth defects in humans.' Craniofacial neural crest cells
(CNCCs) play a central role in orofacial development. CNCCs
originate from the dorsal aspect of the neural tube, migrate to
facial primordia, proliferate and differentiate to mesenchymal
cells, and give rise to a wide variety of craniofacial structures:
most of the skeletal element, cartilage, nerve, and connective tis-
sues.”® During embryonic development, palatal shelves of the
secondary palate arise from the medial projections of the facial
maxillary processes, grow vertically along the lateral sides of
the tongue, elevate to horizontal direction above the tongue,
and fuse at the midline. Cleft palate can be caused by improper
growth or fusion problem of the palatal shelves.” Additionally,
inappropriate positioning of the tongue and reduced growth of
Meckel’s cartilage also results in cleft palate.®"°

The development of a cleft palate is correlated with genetic or
environmental factors or their combination in craniofacial devel-
opment. Altered Wnt signaling activity is highly associated with
cleft palate.” For example, Wnt5a is expressed in the CNCCs-
derived mesenchyme and mice lacking Wnt5a or its receptor
Ror2 exhibit shortened mandible and cleft palate with a failure

in palatal shelf elevation.® Wnt7-Cre-mediated deletion of
Whtless, which is essential for Wnt trafficking, in mouse cranio-
facial mesenchyme inhibits Wnt5a-mediated noncanonical
WNT signaling and leads to cleft palate.® Additionally, mesen-
chymal deficiency of Porcn, encoding the porcupine O-acyl-
transferase required for lipid modification of WNTs, also results
in cleft palate.’” However, how the WNT signaling activity is
tightly controlled by post-transcriptional mechanisms during
craniofacial development remains elusive.

Nonsense-mediated mRNA decay (NMD) is a translation-
dependent RNA surveillance machinery that recognizes and
eliminates mRNAs containing premature termination codons
(PTCs) to maintain cellular RNA homeostasis."' An estimated
one-third of the alternative transcripts in the human transcrip-
tome contain PTCs, making alternative splicing coupled to
NMD to be an efficient means to regulate gene expression.'?
In addition to its quality-control function, NMD targets around
10% of normal gene transcripts in response to cellular needs.'®
Through modulating mRNA stability, NMD actively participates
in cell fate transition between stem cells and their somatic prog-
enies.""""*'® There are two main routes for mRNA degradation in
NMD: SMG5/7-dependent and SMG6-dependent decay of
target MRNAs. Functional dependency is found between these
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two pathways: the loss of SMG5/7-dependent NMD could inac-
tivate the SMG6-dependent branch, and the presence of either
SMG5 or SMG?7 is sufficient to support SMG6-mediated endo-
nucleolysis of NMD targets."” Intriguingly, SMG5 can substitute
the role of SMG7 and individually activate NMD."”

Previous studies have shown that NMD factors are required for
early embryogenesis, as knockout of NMD genes including UpfT,
Upf2, Smg1, and Smg6 cause early embryonic lethality.'> 42"
Mechanistically, NMD destabilizes mRNAs with various NMD
features, such as long 3’ UTRs and PTCs, to safeguard the
proper differentiation of embryonic stem cells.”>'® In addition,
NMD plays a critical role in development and homeostasis of tis-
sue-specific stem cells. For example, knocking out Smg6 in neu-
ral stem cells starting from mouse embryonic stage E10.5
causes mild neurogenesis defects in the cortex.”” Hematopoiet-
ic stem cell-specific deletion of Upf2 results in the extinction of all
hematopoietic stem and progenitor populations.”® Upf2 also
plays crucial roles in the development of prospermatogonia in
neonatal mice, as well as during the first wave of spermatogen-
esis in puberty mice.”® Mutations in SMG9 lead to a multiple
congenital anomaly syndrome in humans and mice.?*

In this study, we investigate the function of NMD in regulating
mouse craniofacial development using mouse model with Smg5
specifically deleted in mouse CNCCs-derived mesenchyme. We
show that Smg5 is required for craniofacial development in mice.
Smg5 null mesenchyme shows delayed cell differentiation and
aberrant cell apoptosis. Additionally, loss of Smg5 in developing
mesenchyme leads to altered alternative splicing events and
accumulation of PTC-containing mRNA isoforms in developing
mandibles. Moreover, our findings demonstrate an essential
role for Smg5-mediated NMD in mammalian craniofacial devel-
opment through post-transcriptional control of Porcn to regulate
the Wnt signaling pathway.
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Figure 1. Smg5 is required for secondary
palate development in mice

(A) The Smg5"/"7-Cr® mice display a wide-open
cleft secondary palate (asterisk) and a small
mandible (indicated by an arrow).

(B) Comparison of the length and width of man-
dible in control and Smg5"""-°"* embryos at PO
(n = 3). Data are shown as mean + SEM. Student’s
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54 g t test, *o < 0.05. Scale bars: 1 mm in (A) and
400 pm in (B).
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To investigate the role of Smg5-mediated
NMD in craniofacial development, we
crossed Smg5 conditional knockout
mouse line with the Wnt1-Cre line to inac-
tivate Smg5 in CNCCs-derived mesen-
chyme (Figure S1). Smg5"W"-C® mice
displayed evident craniofacial abnormal-
ities in especially small mandible and a
complete cleft secondary palate with
100% penetrance (Figures 1A and 1B). Smg5 knockout mice
died after birth, primarily attributed to the inability to suckle effec-
tively due to cleft palate. Histological analysis showed that
Smg5"M1-Cre palatal shelves were deformed from E12.5
(Figures 2A and 2B). At E14.5, the palatal shelves of control
mice have elevated to the horizontal position, met in the midline,
and initiated fusion (Figure 2C). By contrast, the palatal shelves
of Smg5"™"-C" failed to grow horizontally and remained at the
vertical position, resulting in a clefting defect (Figure 2C). It is
noteworthy that Smg5""!"-C"® exhibited a mispositioned tongue
(Figures 1B and 2C), which may obstruct the elevation of the
palatal shelves and contribute to the cleft palate. Additionally,
the elevation of one side of the palatal shelves occurred at later
stages in Smg5"""-¢"® embryos (Figure 2D), suggesting that the
palatal shelves depleted of Smg5 still possess intrinsic compe-
tency for elevation. Additionally, we performed in vitro palate
fusion assay to determine whether palatal fusion was affected
due to loss of Smg5. The results showed that palatal shelves
lacking Smg5 reserve the ability to fuse (Figure S2). Using
Smg5"V1-Cr® mice and their littermates carrying a ROSA™ /™G
allele, we also found CNCCs of Smg5"™"-C"® migrated to the
facial primordia as in their control littermates (Figure S3), sug-
gesting that Smg5 deficiency did not disturb the normal migra-
tion of CNCCs. Taken together, these results suggest that the
primary reason for the cleft palate may be attributed to micro-
gnathia and the resulting obstruction caused by the tongue.

I |
mandible

Deficiency of Smg5 leads to massive cell apoptosis in
CNCCs-Derived mesenchyme

To identify the cellular defects underlying abnormal secondary
palate development in Smg5"""-¢ we performed TUNEL
assay to examine cell apoptosis in the developing palatal shelves
at E13.5. The results revealed massive cell apoptosis all over the
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Figure 2. Histological analyses of frontal sections of control and Smg:
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(A-D) Embryonic heads from wild-type and Smg5-deficient mice were collected, fixed by 4% PFA, paraffin-embedded, sectioned into 7-um slices, and stained
with hematoxylin and eosin. The palatal shelves of SmgSW””'C’e embryos exhibit evident abnormal shapes at E12.5 and E13.5 (A, B) and fail to elevate and
become cleft at E14.5 (C). Elevation of one side of the palatal shelves occurred in Smg5"/""-C"® at E16.5 (D), suggesting that the Smg5-deficient palatal shelves
still reserve the potential to elevate. Arrows indicate the failure of palatal elevation in Smg5W””'C’le mice. P, palate; T, tongue. Scale bars, 400 um.

craniofacial mesenchyme, including palatal shelves and the
mandible (Figures 3A-3C). To further investigate the effect of
Smg5 deficiency on CNCCs, we performed in vitro culture of
CNC explants from Smg5"""-¢"® mice and their littermates,
both of which were carrying a ROSA™"™@ allele as a Cre re-
porter. In response to Cre recombination, CNCCs and their de-
rivatives expressing Cre have cell membrane-localized EGFP
(mG) fluorescence expression instead of tdTomato in mouse car-
rying a ROSA™"™ME allele. As revealed by EGFP fluorescence, the
CNCCs migrated normally from both control and Smg5"/t’-Cre
CNC explants (Figures 3D-3K). Consistent with the in vivo res-
ults, a great reduction in green fluorescence was observed in
Smg5"nt1-Cre explants from day 4 of culture (Figures 31-3K). The
fluorescence intensity of Smg5"""-C"® gradually decreases dur-
ing in vitro culture, with control explants showing approximately
twice the fluorescence intensity of Smg5"""-¢" from day 4 (Fig-
ure 3L). These results suggest that cell apoptosis occurs in
CNCCs that migrated from Smg5"""-°® CNC explants. Taken
together, these results suggest that Smg5 is required for the sur-
vival of CNCCs during craniofacial development.

Chondrogenesis of Meckel’s cartilage and
intramembranous ossification of mandible bone are
impaired in Smg5"Vnt1-cre

Given the link between cleft palate and small mandible,® our find-
ings of micrognathia in Smg5 knockout mice prompted us to
investigate the timing and mechanisms of mandibular develop-
ment disruption caused by Smg5 deficiency, confirming that

the cleft palate is a consequence of the small mandible. Histolog-
ical analysis revealed that the mesenchymal condensation of
Meckel’s cartilage was delayed in Smg5"""°® mice. At
E11.5, mesenchymal cells aggregated in the presumptive Meck-
el’s cartilage region in the control mice but were absent in
Smg5""1-Cre mice (Figure 4A). As the development proceeded,
the Meckel’s cartilage was formed in Smg5"/™’-°"® mice but was
finer than in the control mice (Figure 4A). Next, we examined the
expression of Col2a1 and Sox9, the characteristic markers of
chondrocytes, by in situ hybridization and immunofluorescent
analysis in control and Smg5"""""® mice. Both Col2a? and
Sox9 expression were greatly decreased in Smg5"""-C"® (Fig-
ure 4B). Western blot analysis also revealed a dramatically
decreased Sox9 level in mandibles lacking Smg5 (Figure 4D),
suggesting that the chondrogenic differentiation was disturbed
in Smg5"1-C"* mice. Consistent with the above results,
Smg5""1-C" mice exhibited a marked reduction in Meckel’s
cartilage size from E13.5 (Figure 4C). These results revealed
that the small mandible appeared before the elevation of the
palatal shelves at E14.5, indicating that the cleft palate in
Smg5""1-C® mice could be largely attributed to the small
mandible.

As a transient structure, Meckel’s cartilage disappears as the
development proceeds.”” It is noteworthy that the Meckel’s
cartilage of Smg5"/""-°"® does not disappear as in its littermates
at E18.5 (Figure 4C), suggesting that the molecular program con-
trolling this disappearance process is disrupted in response to
Smg5 deficiency. Furthermore, the ossification of the mandible
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Figure 3. Aberrant cell death in Smg5-deficient CNCCs-derived craniofacial mesenchyme and CNC explants
(A and B) TUNEL staining analysis shows that loss of Smg5 induces dramatic ectopic cell apoptosis all over the mesenchyme of the developing maxillary and

mandible (n = 3). A, B/, A”, B”. Magnified pictures of A and B.

(C) Number of apoptotic cells in designated areas of the palatal shelves (A’, B’) and the mandible (A”’, B”). Data are shown as mean + SEM. Student’s t test,

**p < 0.01; ** p < 0.001.

(D-K) In vitro organ culture experiments show greatly decreased EGFP fluorescence in CNCCs that migrated from Smg5”*;ROSA™"™G:Wnt1-Cre (H) and

Smg5":ROSA™™E;Wnt1-Cre (M) CNC explants in a 6-day culture (n = 3).

(L) Representative relative fluorescence intensity in control (H) and Smg5-deficient mice (M) in D-K, normalized to day 2 control. Scale bars: 200 pm in (A) and

(B) and 50 pum in others.

bone was delayed in Smg5"™"-¢"® mice. Intramembranous ossi-

fication was observed in control but not Smg5"""-"® mandible
bone at E15.5 (Figure 4C), followed by a greatly reduced
bone size in Smg5-deficient mandibles at E18.5 (Figure 4C).
The expression levels of Runx2 and Sp7, two transcription fac-
tors critical for osteoblast differentiation,”®® were severely
decreased in the developing mandible at E13.5 (Figure 4D),
which may account for the impaired mandible bone formation
in Smg5""7-¢"® mice. In sum, these results suggest that Smg5
depletion compromises cell differentiation in developing mouse
mandibles.

Defective NMD activity in Smg5"/™' € mice

To examine whether NMD function is affected by Smg5-defi-
ciency, we analyzed the expression of general NMD targets in
control and Smg5-deficient mandibles at E13.5. We first
analyzed the alternative splicing-coupled NMD by RT-PCR anal-
ysis. In the absence of Smg5, the level of the PTC-containing
NMD target transcripts with features of both exon inclusion
(Hnrnpl, Jmjd6, Srsf2, Tmem183a, Rpl3) and exon exclusion
(Hnrnph1, Hnrnph3, Mgea5, Ptbp2, Trub2) was greatly increased
(Figures 5A and 5B). The percent spliced-in values also indicate

4 iScience 28, 111972, March 21, 2025

significant alterations in the splicing of these genes. Additionally,
the expression of several NMD target transcripts, including Atf4,
Ddit3, Gas5, and 1810032008Rik, was significantly upregulated
in Smg5""t"-C mandibles (Figure 5C). Collectively, these results
suggest that Smg5 is essential for NMD in CNCCs-derived
mesenchyme during embryonic development.

Smg5 deficiency leads to altered alternative splicing
events in developing mouse craniofacial tissue

Next, we investigated the intrinsic molecular mechanism by
which Smg5-mediated NMD may regulate craniofacial develop-
ment. RNA sequencing (RNA-seq) analysis at multiple develop-
mental stages revealed that Smg5 deficiency significantly
affected gene expression and the alternative splicing events in
developing mandibles (Figure 6A; Tables S1, S2, S3, and S4).
As NMD can affect the outcome of alternative splicing, we
used differentially expressed transcripts (DETS) instead of differ-
entially expressed genes for analysis. Increasing number of
DETs was found in Smg5"""-¢"® mandibles at E10.5, E11.5,
and E13.5 (Figure 6B). It is noteworthy that, for each stage, the
number of increased DETs in Smg5""""C"® is at least 3-fold of
that of downregulated DETs, which is probably caused by the
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accumulation of undegraded NMD target genes. In the Venn di-
agram of DETs across the developmental stages from E11.5 to
E13.5, 1564 transcripts were found to be upregulated in all three
stages (Figure S4). Conversely, 70 transcripts were consistently
downregulated throughout these stages. Additionally, a small
subset of DETs exhibited inconsistent expression changes
across the three stages. Some were upregulated followed by
downregulation, while others showed the opposite pattern.
Some displayed even more complex patterns, indicating the
intricate interplay between gene expression dynamics and the
regulatory mechanisms influenced by NMD inactivation during
embryonic development. These complex patterns may be asso-
ciated with genes that undergo alternative splicing, which have
multiple isoforms showing different expression trends under
NMD inactivation.

Next, we performed enrichment analysis using Enrichr, a suite
of gene set enrichment analysis tools,”® with genes containing
DETs from E10.5 to E13.5, and similar results were obtained in
these three stages; shown are the results from E11.5 (Figures
6C and 6D). Analysis against the MGI_Mammalian Phenotype li-
brary revealed that they were mostly enriched in the preweaning
lethality and embryonic lethality during organogenesis gene sets
(Figure 6C), suggesting a fundamental role for Smg5 in regulating
mammalian embryonic and fetal development. GO_Molecular_
function analysis revealed that DETs are most significantly en-
riched in functions related to RNA binding and mRNA binding,
including serine/arginine (SR)-rich proteins (also known as SR
splicing factors, Srsfs) and heterogeneous nuclear ribonucleo-
proteins (hnRNPs) (Figure 6D; Table S5). The changes in these
RNA-binding DETs are highly complex. For instance, at E11.5,
the protein-coding transcript of Srsf1 is downregulated by up
to 2.4-fold as shown in Table S5. Transcripts of Hnrnpht,
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Sox8
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Figure 4. Loss of Smg5 in CNCCs compro-
mises chondrogenesis and osteogenesis
in developing mandibles

(A) Histological analyses of frontal sections show
mesenchymal cell condensation of Meckel’s
cartilage in control but not in Smg5"""-¢"® em-
bryos at E11.5. The size of Meckel’s cartilage is
significantly reduced in E16.5 Smg5"/""-¢" em-
bryos. The presumptive Meckel’s cartilage areas
and Meckel’s cartilage are indicated by arrows.
(B) In situ hybridization analysis and immuno-
histofluorescence analysis show that the expres-
sion of chondrogenic markers Col2a1 and Sox9 is
decreased in Smg5-deficient mandibles at E12.5.
(C) Skeletal preparations with alizarin red (bone)
and Alcian Blue (cartilage) shows reduced Meck-
el’s cartilage size and impaired bone formation in
developing Smg5""t"-°"® mandibles.

(D) Western blotting reveals that the level of
osteogenic markers, Runx2 and Sp7, and the
chondrogenic marker Sox9, is dramatically decr-
eased in Smg5"™"-°"® mandibles at E13.5. B-Actin
was used as a loading control. Scale bars: 100 um
in (A), 200 um in (B), and 1 mm in (C).

Smg FWnt1-Cre
Colzai

Control Smg8§*nt?-Cre

Sp7

R

Actin

Hnrnp3, and Hnrnpl that contain PTCs are significantly upregu-
lated, with increases of 13.36-fold, 8.95-fold, and 13.27-fold,
respectively. Hnrnpk shows significant expression changes in
seven transcripts encoding full-length proteins: two are upregu-
lated by 19.77-fold and 21.83-fold, while five are downregulated
ranging from 2.65-fold to 14.86-fold. This result is in support of
the previous notion that spicing factors used alternative splicing
and NMD for regulating the outcome of their expression and
could account for the altered alternative splicing events in
Smg5""1-Cre The expression of several genes encoding RNA-
binding proteins, which are well-known NMD targets, is also
confirmed by our RT-PCR data (Figures 5A and 5B). Chromatin
immunoprecipitation (ChIP) enrichment analysis (ChEA) revealed
that the DETs are strongly associated with genes that are
putative targets of RUNX2, a transcription factor essential for
osteoblast differentiation (Figure 6E). This result, together with
our skeletal staining and western blot results (Figure 4C), sug-
gests that osteoblast differentiation is severely impaired in
Smg5"m!-C"e mice.

To explore the key molecules that are involved in the formation
of cleft palate in Smg5"™'-¢"®, we performed Venn analysis of
genes that enriched in abnormal craniofacial morphology gene
sets of three embryonic stages, and the results revealed 14
genes that exhibit DETs at all the three stages (Figure 6F). Further
analysis showed that only 10 transcripts of the 14 genes are
constantly changed from E10.5 to E13.5 (Figure 6G). To further
identify the most plausible target gene contributing to the pheno-
typic defects observed in Smg5-deficient mice, we examined the
functional roles of these consistently altered genes. Through a
thorough literature review, we found that Porcn is required for
palmitoylation modification of WNT ligands for functioning and
its deficiency is associated with cleft palate.’® In contrast, the
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Figure 5. Deletion of Smg5 with Wnt1-Cre
leads to impaired NMD activity
(A and B) RT-PCR analysis reveals significant al-
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terations in the alternative splicing of established
NMD targets in Smg5"™’-¢"* mandibles. Arrows
highlight potential PTC-containing isoforms that
exhibit increased levels following Smg5 depletion.
The percent spliced-in (PSI) values for each gene
are displayed below the corresponding RT-PCR
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(C) Quantitative RT-PCR analysis showing signifi-
cantly increased expression of NMD target genes
including Atf4, Ddit3, Gas5, and 1810032008Rik
in Smg5-deficient mandibles. Data were shown as
mean + SEM. Student’s t test, **p < 0.001. C,
control; M, Smg5"m1-cre,
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other genes showed no significant association with craniofacial
development or cleft palate. Based on these findings, we identi-
fied Porcn as a potential key target regulated by Smg5-medi-
ated NMD.

Porcn is the key target of Smg5-mediated NMD in
regulating mouse craniofacial development
Subsequently, we investigated whether the dysregulation of
Porcn expression was the principal factor behind the observed
phenotypes in Smg5"/™"-C"® mice. We performed Integrative Ge-
nomics Viewer visualization analysis on the RNA sequencing
data of Porcn gene expression at E11.5. As revealed by the
Sashimi plot, the inclusion levels of exons 3 through 7 in the
Porcn gene are significantly reduced in Smg5"""-¢"¢ embryos
(Figure 7A). This decrease in exon inclusion was consistent
from E11.5 to E13.5, suggesting a sustained impact of Smg5
deficiency on Porcn splicing (Figure S5A). The RNA sequencing
results also show that the Porcn gene produces multiple iso-
forms during development, with the NM_016913 isoform, which
encodes a normal protein, predominating in wild-type embryos
(Figure S5B). In Smg5 knockout mice, however, the PTC-con-
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Ddit3 Gas5 1810032008Rik

main expression variant (Figures 7B, 7C,
and S5B). Conversely, the level of NM_
016913 encoding the full-length Porcn
protein was significantly downregulated
in Smg5"""-C® mandibles from E11.5
(Figures 7B, 7C, and S5B). These results
from RNA-seq were further confirmed
by RT-PCR analysis (Figure 7D). Similar
results were observed in maxillary sam-
ples (Figure S6). Moreover, western blot
analysis revealed that the altered alte-
rnative splicing events of Porcn leads
to significantly decreased Porcn prot-
ein (Figure 7E). Wntba is expressed in
the CNCCs-derived mesenchyme, and
Whnt5a knockout leads to cleft palate.®
Like other Wnts, palmitoylation by Porcn
on Wnt5a is necessary for its activity.*’
Whnt5a acts through the non-canonical
Whnt (JNK/c-Jun) signaling®'; thus, we next investigated whether
the Wnt5a/JNK signaling pathway was affected in Smg5"/7-Cr
mandibles because of abnormal Porcn expression. Western blot
analysis revealed that the phosphorylation level of JNK was
greatly decreased in Smg5"™"-°"* mandibles (Figure 7E), indi-
cating an impaired Wnt5a/JNK signaling activity. Finally, we
investigated whether Wnt5a would counteract the craniofacial
defects caused by Smg5 knockout. Interestingly, the introduc-
tion of Wnt5a recombinant protein to in vitro explants of CNCs
evidently rescued the cell death of Smg5"""-C® CNCs (Fig-
ure 7F). These data indicate that Porcn is the key target of
Smg5-NMD in CNCCs-derived mesenchyme in mouse craniofa-
cial development.

65 24

DISCUSSION

Although the role of Smg5 in the NMD machinery has been re-
ported,’>"" little is known about its developmental relevance.
In the present study, we address the question of whether and
how Smg5-mediated NMD is involved in craniofacial develop-
ment. Craniofacial tissues are derived primarily from CNCCs,
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Figure 6. Smg5 deficiency results in altered alternative splicing events

(A) RNA-seq analysis reveals significant alterations in alternative splicing patterns in Smg5"™"-°® mandibles. The left panel presents schematic diagrams
illustrating the five fundamental types of alternative splicing: skipped exon (SE), intron retention (IR), mutually exclusive exons (MXE), alternative 5’ splice sites
(A5SS), and alternative 3’ splice sites (A3SS). The corresponding donut charts to the right display the number of genes exhibiting differential alternative splicing for
each of the five categories in developing Smg5"""-¢"® mandibles.

(B) Table showing numbers of significantly upregulated and downregulated transcripts in Smg5-deficient mandibles at various stages.

(C-E) Enrichment analysis of differentially expressed transcripts at E11.5 revealed that Smg5 function is strongly associated with RNA binding, preweaning
lethality, and osteogenesis and chondrogenesis.

(F) Venn analysis of genes with differentially expressed transcripts that involved in regulating craniofacial morphology in Smg5W””'C’e mandibles at E10.5, E11.5,
and E13.5.

(G) Heatmap analysis of the differentially expressed transcripts that constantly changed in Smg5""””'c’e mandibles at E10.5, E11.5, and E13.5.
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Figure 7. Post-transcriptional regulation of Porcn by Smg5-mediated NMD regulates craniofacial development in mice
(A) A Sashimi plot reveals a significant reduction in the inclusion levels of exons 3-7 of Porcn in Smg5"""-°"® mandibles (indicated by an arrow).
(B) Schematic representation of Porcn alternative splicing. The PTC-containing isoform lacking exons 3-7.

(C) Table showing the level of main Porcn transcripts during mandible development.

(D) RT-PCR analysis showing decreased normal isoform level and increased PTC-containing isoform level in mandibles lacking Smg5 at E13.5. The percent

spliced-in (PSI) values for Porcn are displayed below the RT-PCR image.

(E) Western blotting reveals that the levels of Porcn and the downstream phosphorylated JNK are dramatically decreased in Smg5-depletion mandibles at E13.5.
Statistical analysis of western blot bands reveals a significant reduction in Porcn and p-JNK in Smg5-deficent tissues.
(F) Addition of Wnt5a attenuates the cell death of CNCCs that migrated from Smg5"/""-¢® CNC explants. CNCs from control and Smg5"/™"-¢"® embryos were
dissected at E8.5, subjected to in vitro organ culture, collected at day 9, and stained by crystal violet (n = 3). Recombinant Wnt5a (0.2 ug/mL) or BSA was added to
the culture medium 24 h after dissection. Data were shown as mean + SEM. Student’s t test, **p < 0.01. M, Smg5W””'C’e.

and defective CNCC development often leads to cleft pal-
ate®%°?; thus, the regulation of CNCCs development is of great
significance for understanding the molecular mechanism gov-
erning craniofacial development. In this study, we show that
Smg5-mediated NMD is required for the differentiation of

CNCCs during mouse embryonic development.
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Mutation of SMG9, encoding an essential component of the
SMG1-Upf1-eRF1-eRF3 (SURF) complex that generates phos-
pho-UPF1, also leads to multiple congenital anomalies syn-
drome including craniofacial dysmorphism in humans.?* NMD
degrades transcripts containing PTCs relying on RNA splicing
and the assistance of components in the exon junction complex
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(EJC), including EIF4A3, MAGOH, or RBMS8A.>® Mutations in
these EJC components are associated with craniofacial disor-
ders.®>* % For example, EIF4A3 mutations lead to Richieri-
Costa-Pereira syndrome in humans, marked by craniofacial
and limb abnormalities.>* In zebrafish, eif4a3 knockdown results
in underdeveloped craniofacial structures, similar to the human
syndrome.®* Haploinsufficiency for Eif4a3, Magoh, or Rbm8a
leads to aberrant neurogenesis and microcephaly through p53
signaling in mice.*® In addition to our findings that Smg5 defi-
ciency leads to cleft palate and micrognathia in mice, these find-
ings suggest an essential role of key genes in the NMD pathway
in vertebrate craniofacial development.

Elevation of palatal shelves from a vertical to a horizontal po-
sition coincides precisely with specific morphogenetic changes
in other orofacial organs.® The palatal shelves of Smg5""-Cre
fail to elevate at E14.5 and result in cleft palate. In mammals,
Meckel’s cartilage regulates the extension of the mandible and
the growth of the primary ossification center of the mandible.?>*”
Thus, the small mandible of Smg5"""-¢"¢ probably results from
its severely shortened Meckel’s cartilage.

NMD plays a critical role in regulating stem cell differentiation:
Smg6 knockout results in sustained expression of pluripotency
genes and inhibition of embryonic stem cell differentiation.’®
Additionally, a global differentiation defect has been observed
in Smg5, Smg6, and Smg7-deficient embryonic stem cells
(ESCs)."®®® In support of these results, our results show that
both chondrogenic and osteogenic cell differentiation are
severely compromised in response to Smg5 loss. Furthermore,
we found that WNT5A could restore cell viability in Smg5-defi-
cient CNC explants, suggesting that the increased cell apoptosis
in Smg5"™"-C"* may have occurred to eliminate cells with a fail-
ure in differentiation.

Most mammalian genes undergo alternative splicing to in-
crease proteomic diversity, generating productive isoforms
that code for functional proteins, while unproductive isoforms
containing PTCs are targeted for degradation.'?*%° Approxi-
mately one-third of alternative splicing events generate tran-
scripts containing PTCs that are targeted for degradation by
NMD in humans.'® This coupling of alternative splicing with
NMD fine-tunes the balance of MRNAs encoding functional pro-
teins versus those harboring PTCs within a single gene locus.*°
Notably, numerous RNA-binding proteins, such as Hnrnpl,
Ptbp2, Srsf1, and Rpl3, which are pivotal in mRNA splicing regu-
lation, employ alternative splicing and NMD to modulate their
own mRNA levels through a feedback loop mechanism. In Cae-
norhabditis elegans, it has been shown that smg genes can influ-
ence the expression of normal genes by altering the levels of
alternatively spliced mRNAs of SRp20 and SRp30b.*" Similarly,
in Smg6 knockout mouse embryonic stem cells, the alternative
splicing of several splicing factors, including Rps12, Srsf2, and
Hnrnph1, is disrupted.’® Consistent with these findings, our
study reveals that Smg5 knockout profoundly affects the alterna-
tive splicing of RNA-binding proteins. It is reasonable to infer that
the changes in RNA-binding proteins are associated with the
splicing and gene expression alterations induced by Smg5
knockout, suggesting that the misregulation of RNA-binding pro-
teins could largely contribute to the mRNA expression disrup-
tions caused by Smg5 deficiency.
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Here we identify Porcn as a key target of NMD in regulating
mandible development. In addition to the retaining of the PTC-
containing isoform, the normal isoform of Porcn is also signifi-
cantly decreased due to Smg5 deficiency. Although the molecu-
lar mechanism for regulating the alternative splicing of Porcn is
unclear, Porcn transcripts have been identified to be associated
with RNA-binding protein HhnRNPK in cultured rat hippocampal
neurons.*? Additionally, RNA immunoprecipitation sequencing
(RIP-seq) analysis indicates a potential interaction between
HnRNPL and PORCN pre-mRNA in prostate cancer LNCaP
cells.*® Our results reveal that impaired NMD results in the dereg-
ulation of these HNRNP proteins. Specifically, the PTC-containing
isoform of Hnrnpl is markedly upregulated in response to Smg5
loss. In the case of Hnrnpk, the transcriptional changes are vari-
able, with some transcripts increasing and others decreasing.
Thus, the decrease of Porcn normal isoforms may be resulted
from the dysregulated splicing regulators upon NMD ablation. It
would be interesting to elucidate which alternative splicing regu-
lator is coupled with NMD for maintaining the normal level of
Porcn during embryonic development in further studies.

In this report, we provide a novel molecular mechanism for the
fine-tuning of mesenchymal Wnt signaling activity by regulation
of Porcn with alternative splicing and NMD during embryonic
development. Given the significant role of Wnt signaling in devel-
opment and disease, it is worthy to investigate whether the regu-
lation of Porcn expression level by NMD represents a common
molecular mechanism in fine-tuning of Wnt signaling level in
other organs or in disease.

Limitations of the study

Our study elucidates the pivotal role of Smg5-mediated NMD in
craniofacial development of mice. Specifically, we have discov-
ered that Smg5-dependent NMD modulates the Wnt signaling
cascade by regulating the alternative splicing outcome of Porcn,
thereby influencing craniofacial development. While our findings
provide valuable insights, we have not yet identified the specific
RNA-binding proteins whose altered expression in Smg5-defi-
cient tissues leads to dysregulation in Porcn expression. Further-
more, it remains unclear whether the changes in Porcn splicing
are a direct consequence of NMD’s impact on a single RNA-
binding protein or if they result from a complex interplay among
multiple splicing regulators. Future studies should aim to
address these gaps in knowledge, providing a more comprehen-
sive understanding of the intricate interplay between Smg5-
mediated NMD, Porcn splicing, Wnt signaling, and craniofacial
morphogenesis.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Smg5 Abcam Cat# ab33033; RRID: AB_882612

Sox9 Abcam Cat# ab185230; RRID: AB_2715497

Runx2 Santa Cruz Biotechnology Cat# sc-390351; RRID: AB_2892645

Sp7 Abcam Cat# ab209484; RRID: AB_2892207

Porcn Abcam Cat# ab105543; RRID: AB_10860951

p-JNK Cell Signaling Technology Cat#4668; RRID: AB_823588

JNK Cell Signaling Technology Cat# A4867; RRID: AB_2863367

B-Actin Cell Signaling Technology Cat#3700; RRID: AB_2242334

Critical commercial assays

TUNEL BrightGreen apoptosis detection kit Vazyme Cat#A112
RevertAid ™ Master Mix ThermoFischer Scientific Cat# M1632
UltraSYBR mixture CWBIO Cat#E606335
Trizol ThermoFischer Scientific Cat# 15596026CN
2xTaq MasterMix CWBIO Cat#CW0690
SsoFast EvaGreen Super mix Bio-Rad Cat#1725204
Recombinant Wnt5a R&D Cat#645-WN; P22725
Deposited data

RNA-Seq data of developing embryos This paper GSA: CRA009091
Experimental models: Organisms/strains

Mouse: Smg5'"ox/Flox Dr. Li Chen et al.”*®
Mouse: Wnt1-Cre The Jackson Laboratory Cat#004782
Mouse: ROSA™TmE The Jackson Laboratory Cat#007676
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CAGGACTATGAACTGACATGGAGG
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TACCTCTTAGGGAAAGCTGGGCC

Genotyping primer for Cre: Forward: This paper N/A
TTCTGCGGGAAACCATTTCCG

Genotyping primer for Cre: Reverse: This paper N/A
ACTCGCATCACTGCCCTCA

RT-PCR primer for Porcn: Forward: This paper N/A
CTCCATCTGTCCATCCATCTGT

RT-PCR primer for Porcn: Reverse: This paper N/A
GCTCCACATTCAACGGTCTA

QPCR and RT-PCR primers Weischenfeldt et al.?**° N/A

for NMD targets

Software and algorithms

GraphPad Prism 9.5
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Image Lab 5.1
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Photoshop Software
Image Lab Software

http://www.graphpad.com/
https://www.adobe.com
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics statement
All animal experiments were approved by the Animal Users Committee of Hangzhou Normal University and carried out in strict accor-
dance with the Guide for the Care and Use of Laboratory Animals at Hangzhou Normal University.

Animals

Wnt1-Cre and ROSA™"™E mouse lines were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). Conditional Smg5
knockout mouse allele was produced by inserting loxP sequences flanking exons 2-4 by gene targeting in ESCs with the genetic
background of C57BL/6 %8 (Figure S1). Smg5™ mice were crossed with Wnt7-Cre mice to generate Smg5®+:W?-Cr¢ mice, which
were back-crossed with Smg5™" for producing Smg5 conditional knockout mice (Smg5"""-¢"¢). Primers for genotyping are as fol-
lows: Smg5-F: 5’- CAGGACTATGAACTGACATGGAGG -3’; Smg5-R: 5’- TACCTCTTAGGGAAAGCTGGGCC -3’; Wnt1-CreF:5’- TT
CTGCGGGAAACCATTTCCG -3’; Wnt1-CreR:5’- ACTCGCATCACTGCCCTCA -3’. The PCR bands for WT and alleles are 367 bp and
480 bp, respectively. The PCR bands for Wnt1-Cre are 368 bp. The morning of vaginal plug appearance was determined as embry-
onic day 0 and embryos were harvested from timed pregnant females. Mice at E8.5 and beyond, as well as PO, were used for this
study. Smg5"""-¢"® mice were compared to their wild-type littermates. Gender does not affect the experimental results, as both fe-
male and male Smg5"""-C"® mice exhibit the cleft palate phenotype. All of the available Smg5"™"-°"® mice, both male and female,
were arbitrarily used for experiments. All the mice used in this study were reared in specific pathogen free (SPF) facilities.

METHOD DETAILS

Histology, immunohistochemistry, in situ hybridization, Alcian blue and alizarin red staining, and western blotting
Embryos were dissected and fixed in 4% PFA (Sangon, Shanghai, China) overnight at 4°C. Samples were dehydrated through an
ethanol series and embedded in paraffin. After deparaffinization and hydration, 7 um sections were stained with hematoxylin and
eosin (HE) following standard protocols. For in situ hybridization, cDNA fragments were cloned into the pGEM®-T Easy vector (Prom-
ega), and linearized for probe synthesis. Digoxigenin-labeled probes were generated using T7 or SP6 RNA polymerase (Promega)
with DIG RNA Labeling Mix (Roche) and hybridized to 12-um paraffin sections as previously described.** Immunohistofluorescence
was performed with 5 um sections using antibodies against SOX9 (ab185230, Abcam, UK) according to the manufacturer’s instruc-
tions. For alcian blue and alizarin red staining, embryos were dissected, fixed in 95% ethanol, and stained with alcian blue and alizarin
red as described in.“*® For immunobilot analysis, tissue or cell lysates were resolved by SDS-PAGE and subjected to immunoblotting
analyses with primary antibodies and the according HRP-linked secondary antibodies according to standard procedures. The
following primary antibodies were used for Western blot analysis: Smg5 (ab33033, Abcam), Sox9 (ab185230, Abcam), Runx2 (sc-
390351, Santa Cruz Biotechnology), Sp7 (ab209484, Abcam), Porcn (ab105543, Abcam), p-JNK (4668, Cell Signaling Technology),
JNK (A4867, Abclonal), and B-Actin (3700, Cell Signaling Technology).

Cell apoptosis assays

Apoptosis was assayed by the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) using TUNEL BrightGreen
apoptosis detection kit (Vazyme, Nanjing, China) according to the manufacturer’s instructions. Briefly, 5-um-thick paraffin slides
were first hydrated, followed by three washes in PBS, treated with 2 mg/ml proteinase K, and balanced with Equilibration Buffer.
Then, the sections were incubated with labeling buffer containing BrightGreen Labeling Mix and Recombinant TdT Enzyme and
placed in a humidified chamber in the dark at 37°C for 1 h. Finally, the slides were stained with DAPI after three washes of PBS
and mounted for fluorescence observation.

RT-PCR

Total RNA from E13.5 mandibles of control and Smg5"/™"-°" mice was isolated using Trizol (Thermofisher). cDNA was synthesized
from 1 pg of total RNA from each group using RevertAid Master Mix (Thermofisher). For the quantification of NMD target gene expres-
sion, gRT-PCR and semi-quantitative RT-PCR was performed in triplicate using SsoFast EvaGreen Super mix (Bio-Rad) and 2xTaqg
MasterMix (CWBIO), respectively. qRT-PCR was performed in a StepOnePlus™ Real-Time PCR Instrument (Thermo Fisher Scien-
tific). 18S rRNA was used as a reference gene. The 2 -AACT method was used for quantification of gqRT-PCR data. For semi-quan-
titative RT-PCR analysis to identify the normal and the PTC-containing isoforms, PCR products were examined by electrophoresis
through a 2% agarose. PCR primers for NMD common targets were synthesized according to previous publications.?>*° PCR
primers for examining Porcn isoforms are: Porcn-F: 5’- CTCCATCTGTCCATCCATCTGT -3’, and Porcn-R: 5’- GCTCCACATT
CAACGGTCTA -3’. The PCR bands for NM_016913 and the PTC-containing isoform (T013571) are 880 bp and 204 bp, respectively.

RNA-seq analysis

The mandibles were dissected out from E10.5, E11.5, and E13.5 embryos and subjected to RNA-seq analysis by BGI (Wuhan, China).
Briefly, mMRNAs were isolated from total RNA with the oligo(dT) method and fragmented for synthesizing first-strand and second-
strand cDNA. Subsequently, the cDNA fragments were purified for end repair and single nucleotide A addition, linked with adapters
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and selected for PCR amplification for library construction. The samples were sequenced on lllumina Hiseq4000. The clean reads
were mapped onto the Mus musculus genome (mm10) using Bowtie2 and the gene expression level in each sample was calculated
with RSEM.*®*” Transcripts having probability >0.8 in NOISeq and fold change > 2 were selected as of significant differential expres-
sion. ASprofile was used to determine and quantify the alternative splicing events among different samples.*® Differential alternative
splicing events was analyzed by rMATS and an FDR = 0.05 was determined as of significant difference.*® For each genotype, two
independent samples were sequenced respectively. The raw sequence data reported in this paper have been deposited in the
Genome Sequence Archive in National Genomics Data Center, China National Center for Bioinformation/Beijing Institute of Geno-
mics, Chinese Academy of Sciences, under accession number CRA009091 that is publicly accessible at https://bigd.big.ac.cn/
gsa. Enrichment analysis of RNA-Seq data was performed using Enrichr, which is a comprehensive resource for curated gene
sets.””°! Donut Chart was generated by Graphpad. Symmetric Venn analysis for genes and Heatmap was performed using the
OmicStudio tools. Non-Symmetric Venn analysis for DETs were performed using Draw Venn Diagram (http://bioinformatics.psb.
ugent.be/webtools/Venn/). The PSI for well-known NMD targets and Porcn is determined utilizing RNA-Seq data. It's calculated
by dividing the number of reads that include a particular exon by the total number of reads that either include or skip that exon.
Sashimi plot was created utilizing using the Integrative Genomics Viewer (IGV).

In vitro organ culture

For the in vitro palate fusion assay, paired palatal shelves from E13.5 embryos were dissected and placed on a Nucleopore Track-
Etch Membrane in a Trowell-type organ culture dish for 2 d before harvested for histological analysis. For in vitro culture of CNC, E8.5
cranial neural folds were dissected and cultured in gelatin-coated tissue culture dishes in a standard cell culture incubator (37°C, 5%
CO,) as previously described.>” For observation of the migrated CNCCs, Smg5”" mice were crossed with ROSA™'™C Cre reporter
mice®® to carrying the ROSA™™™C allele. CNC explants from Smg5”7*;ROSA™ MG Wnt1-Cre and Smg5™";ROSA™" ™ Wnt1-Cre
mice, whose CNCCs were EGFP-positive, were used for fluorescence observation. The fluorescence intensity of CNCCs was
analyzed using Photoshop. Fold changes were calculated by normalizing the values to the control at Day2. For Wnt5a rescue exper-
iment, recombinant Wnt5a (0.2 pg/ml, R&D) or BSA (Sangon) were added to the culture medium at 24 hour of dissection and the me-
dium were changed every 3 days. At the 9 days of culture, the CNC explants were fixed by 4% PFA and stained with crystal violet. At
least 3 explants were used for analysis for each genotype.

QUANTIFICATION AND STATISTICAL ANALYSIS

Apoptotic cells were counted from three biological replicates for both wild type and mutants within defined areas. Western blot bands
were quantified from three independent sample groups using Image Lab (Bio-Rad). The relative protein expression levels were deter-
mined by normalizing the gray value of the protein bands to that of f-Actin. Fold changes were calculated by normalizing the values to
the control samples. Data were analyzed with the GraphPad software or excel and were represented as mean + SEM. Experimental
results significance was evaluated by the Student’s t-test. A p-value <0.05 was considered as statistically significant. Statistical de-
tails, including n, mean, and SEM, are detailed in the figure legends.

iScience 28, 111972, March 21, 2025 e3



https://bigd.big.ac.cn/gsa
https://bigd.big.ac.cn/gsa
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/

	ISCI111972_proof_v28i3.pdf
	Fine-tuning of Wnt signaling by RNA surveillance factor Smg5 in the mouse craniofacial development
	Introduction
	Results
	Smg5 loss causes cleft palate in mice
	Deficiency of Smg5 leads to massive cell apoptosis in CNCCs-Derived mesenchyme
	Chondrogenesis of Meckel’s cartilage and intramembranous ossification of mandible bone are impaired in Smg5Wnt1-Cre
	Defective NMD activity in Smg5Wnt1−Cre mice
	Smg5 deficiency leads to altered alternative splicing events in developing mouse craniofacial tissue
	Porcn is the key target of Smg5-mediated NMD in regulating mouse craniofacial development

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Ethics statement
	Animals

	Method details
	Histology, immunohistochemistry, in situ hybridization, Alcian blue and alizarin red staining, and western blotting
	Cell apoptosis assays
	RT–PCR
	RNA-seq analysis
	In vitro organ culture

	Quantification and statistical analysis




